Here are details of the patches and changes made to the various binaries
Tiny Basic
TinyBasic_$2000_raw.kpt
A straight dump of a copy of Tiny Basic loaded from a cassette tape I own with a 1978 copyright by Tom Pittman. It loads from $2000-$28FF. Cold start is at $2000 and warm start is at $2003. On cold start it sets up a lot of variables in page zero. It also has the Break function for the KIM-1 already embedded at $28DO. The default setting sends excess pad characters and x-on and x-off characters that can be confusing on a modern terminal emulator.
TinyBasic_$2000_VT100.kpt
	This is a version of the above that I patched to work more smoothly with the ANSI (VT100) emulation in RealTerm. I needed to find room for a little additional code. When examining the Break function at $28D0 I found a code fragment immediately following the Break function that accessed locations at $6e02 and a subroutine at 72C6. This looked like code to wait for a bit change at 6E02 and load either $01 or $FF into the accumulator before call a subroutine at $72C6. Since none of these addresses are typical of KIM expansions and I could find no JMP or JSR to the address of this code, I used the space starting at $28E8 to implement a control character filter to remove the unnecessary x-on, x-off and rubout characters.
Patches:
$200A $E8 – Low byte of character output routine with filter to remove control characters
$200B $28 - High byte of character output routine with filter to remove control characters
$200F $08 – replaced $5F (_) with Backspace to work with VT100 emulation
$2011 $80 – selects $FF as the pad character and # pad characters to 0. Note TB still outputs one pad character after the : prompt even when the pad character count is set to zero.
Function to strip control characters from output stream. Described in Tiny Basic manual appendix C.
28E8 C9 00	CMP	#$00	;Ensure flags are current for accum just in case
28EA 10 01	BPL	.+1	;If bit 7 = 0 skip next instruction
28EC 60	RTS		;Return with no action
28ED 4C A0 1E	JMP	OUTCH	;Jump to KIM char output function

Microsoft Basic for KIM-1
Kb9.txt
There are several binaries and tape dumps for Kim Basic (KB9) floating around. The only one I could find that would run cleanly was from the Corshamtech.com website (buried in a Tech Tips page https://www.corshamtech.com/tech-tips/basic-interpreters-for-the-6502/). The file was a paper tape dump which loaded fine except for a checksum error on the end record. This file strips all the extra nulls and corrects the EOR checksum error so it loads cleanly without ending with an error.
Cold start for KB9 is $4065. It starts and asks:
[bookmark: _Hlk63085674]MEMORY SIZE? – enter upper memory limit in DECIMAL. Or hit Return and it will find the top of memory
TERMINAL WIDTH? - Return defaults to 72. I typically use 80
WANT SIN-COS-TAN-ATN? – Y = yes, recommended.
Warm start is a 0000. After a cold start KB9 makes changes in memory, especially if you answer ‘Y’ for the trig functions. It sets up a bunch of stuff in page zero including the warm start vector, so creating a functioning memory dump from KB9 after a cold start could be a challenge, especially if your memory space is not identical. This version and the following version load and cold start successfully on several systems with expansion memory starting at $2000 and ending at $7FFF or beyond.
[bookmark: _Hlk54955444]kb9_VT100.txt
The original KB9 was used “_” (underscore $5F) as a backspace character. This makes it awkward to use with modern terminal emulators. I found a patch for this getting backspace ($08) to work correctly in an old Dutch KIM Users group newsletter by modifying the getline function.
http://retro.hansotten.nl/uploads/kimkenner/kimkenner05.pdf
The changes to just 6 bytes are highlighted in bold and underlined. These are the only changes incorporated in kb9_VT100.kpt to create a clean loadable copy that works well with VT-100 emulators.
2420 ca		br2420	dex
2421 10 05		bpl br2438
2423 20 bf 29	br2423	jsr crlf
2436 a2 00	gelin	ldx	#$00
2428 20 56 42	br2428	jsr	getch from kim
242b c9 07		cmp	#$07	;bell is a valid char
242d f0 14		beq	br2443
242f c9 0d		cmp	#0d	; carriage return?
2431 f0 20		beq	br2420
2433 c9 08 		cmp	#$08	;rubout?
2435 f0 e9		beq 	br2420	;yes, then skip previous char
2437 c9 7d		cmp	 #$7d	;char $7d, then skip it
2439 b0 ed		bcs	br2428
243b c9 40		cmp	#$40	;cancel line?
243d f0 e4		beq 	br2423
243f c9 20		cmp 	#$20	;char < 20, then skip it
2441 90 e5		bcc 	br2428

FOCAL
focal_FCL65E_raw.txt
A straight dump of a cassette load of FCL65E copyright 1978 Wayne Wall. The tape was label with:
ID:01 $0020-00D3
ID:02 $2000-35F3

This file combines these two segments and has an EOR corrected for the total number of lines. This straight from the factory dump starts at $2000 and has the upper memory limit $0053-$0054 set to $3F00. It loads and runs in just an 8K memory expansion with a cold start at $2000. Rubout ($7F) is the delete character that generates a ‘\’.
focal_FCL65E_VT100.txt
As with most early code, Focal was set up to use a teletype and has extra pad characters. The following patches have been made for video terminal operation:
34B3 EA
34B4 EA
34B5 EA
34B6 EA

34BA 18
34BB 60

34C4 29
34C5 7F
34C6 18
34C7 60

Since my system has RAM to $7FFF, I made the following changes location $0053 = 00, $0054 =7F. If your memory space is different, you may need to modify these locations in the file. In VT100 emulation, backspace appears to work but this is not fully confirmed. Delete ($7F) does work generating a ‘\’ with each key press.
