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Chapter 1

Introduction

The 65xx family of microprocessors was developed by MOS Technology, which was later
acquired by Commodore.1 The principal designer, Chuck Peddle, had previously designed
the 6800 processor for Motorola.

cbA65 is one of a series of programmers tools for general purpose 65xx code development
and analysis. Other tools include a macro-assembler, a symbolic disassembler, source
generators, debuggers, relocators and emulators.

This assembler2 is provided as an executable file which runs under Microsoft DOS on Pen-
tium compatible hardware platforms, although other platforms may also provide a suitable
operating environment.

In the following chapters the reader will find a detailed description of the cbA65 software,
its features, capabilities and limitations, the source file format, syntax and user options.
Special features of the assembler are fully described. The 65xx CPU architecture and
instruction set are also covered for convenience. Some examples of programming techniques
have been included to illustrate assembler usage concepts.

A summary of the contents of each chapter should help you find the sections of interest.

• Chapter 2 – Assembling a source file.

• Chapter 3 – Assembler directives and syntax.

• Chapter 4 – Source and include files.
1Manufacturing licenses were granted to Synertek, Rockwell and Western Design Center among others.
2For brevity, in the following chapters, cbA65 will be referred to as an assembler, rather than a cross-

assembler.
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• Chapter 5 – Output files and formats.

• Chapter 7 – 65xx processor model and architecture.

• Chapter 8 – Data tables and indexing.

• Chapter 9 – A hashing example.

1.1 Features

cbA65 is a full-featured assembler suitable for program development with all members of
the 65xx processor family. Although this version does not support macros, repeat blocks or
conditional assembly, it has a number of unique and advanced features which may recom-
mend it to the general 65xx programmer.3

A few significant features are:

Performance — Assembles files quickly, accurately and efficiently.

Readability — Listings are formatted for maximum readability.

Listing controls — Supports user control over list file format.

Object files — Offers several optional object file types.

Cycle counting — Provides processor cycle counting option.

Anonymous labels — Advanced support for unnamed target addresses.

Size control — User control over instruction address size.

Instruction usage — Reports instruction usage counts.

Cross reference — Sorted symbol cross-reference table.

1.2 A Note on the Readability of Listings

The highest priority in the development of this assembler was accuracy. Performance,
flexibility and robustness were also development objectives, but one of the top priorities
was to enhance the readability of the output listings.

3A macro assembler, which includes all features of this assembler as well as support for macros, repeat
blocks, table generation and conditional assembly will be released as cbM65.
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With many assemblers, the listings are difficult to read, complicating the debug process.
Experience has shown that code listings which are strongly column oriented are easier to
read and analyze, partly because the eye can locate sections of interest by scanning vertically
in straight lines. Free form assemblers, in contrast, often produce listings which force the
programmer to scan left and right as well as up and down to find the lines he wishes to
examine.

An example of readability problems can be seen in this excerpt from a code listing produced
by an assembler for an Intel processor.4

1 633 000000C8 adcd0:
1 634 000000C8 75 0D 90 90 90 90 jnz adcd1 ; use binary flags
1 635 000000CE 9C pushf
1 636 000000CF 80 0D 00000003r 02 or s_reg,ZFLAG
1 637 000000D6 9D popf
1 638 000000D7 adcd1:
1 639 000000D7 79 0B 90 90 90 90 jns adcd2
1 640 000000DD 80 0D 00000003r 80 or s_reg,NFLAG
1 641 000000E4 adcd2:
1 642 000000E4 A2 00000000r mov a_reg,al
2 643 000000E9 C3 RET 00000h
1 644 000000EA adcb0: ; binary add
1 645 000000EA 80 25 00000003r 3C and s_reg,NOT (PFLAGS OR ZFLAG)
1 646 000000F1 D0 EE shr dh,1
1 647 000000F3 12 D0 adc dl,al
1 648 000000F5 71 0D 90 90 90 90 jno adcb1
1 649 000000FB 9C pushf
1 650 000000FC 80 0D 00000003r 40 or s_reg,VFLAG
1 651 00000103 9D popf
1 652 00000104 adcb1:
1 653 00000104 80 15 00000003r 00 adc s_reg,0
1 654 0000010B 88 15 00000000r mov a_reg,dl
1 655 00000111 E9 000000E0 jmp nz_flags

Clearly, the programmer will have significant problems sifting through the information in
this listing to identify and correct errors. Compare this listing with the following output of
cbA65 for an assembly of the KIMATH subroutine package.

4From a TASM32 assembly of a 6502 emulator.
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000637 FBAC 9D 01 02 sta ra+1,x
000638 FBAF CA dex
000639 FBB0 10 F7 bpl rsra0
000640 FBB2 A9 00 lda #0
000641 FBB4 8D 00 02 sta ra
000642 FBB7 60 rts
000643 ;
000644 ; Clear working storage.
000645 ;
000646 FBB8 A2 34 clear ldx #len*3+1
000647 FBBA A9 00 lda #0
000648 FBBC 9D 00 02 az0 sta ra,x
000649 FBBF CA dex
000650 FBC0 10 FA bpl az0
000651 FBC2 60 rts
000652 ;
000653 ; Convert the contents of cnt
000654 ; from bcd to hex and store the
000655 ; result in cnt.
000656 ;
000657 FBC3 F8 dechex sed
000658 FBC4 A2 00 ldx #0
000659 FBC6 38 sec
000660 FBC7 A5 03 dhcnv1 lda cnt
000661 FBC9 E9 16 sbc #$16

This listing is far easier to read and debug. The strong column orientation facilitates
scanning for specific code blocks.

In the sections on list file options and formats, you will find information which can make the
location and identification of errors and code sequences for cbA65 easy — even in nested
include files. Additional examples of output listings generated by cbA65 will appear later
in this document.

1.2.1 Symbolic Labels

Another consideration involved the naming conventions for symbolic labels, opcodes and
directives. The strategy adopted for cbA65 is to require that all symbolic labels for memory
addresses or other numeric quantities begin in the first column of the source file. Where
spaces are allowed in the source file their number is arbitrary, so this is the only column-
specific formatting requirement.
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1.2.2 Opcode Mnemonics and Directives

The assembler uses standard MOS Technology/Commodore mnemonics for the opcodes and
uses a period . as the leading character in every assembler directive. The purpose is not
only to simplify the file processing but also to simplify debugging. It is much easier for a
programmer to scan a listing when the distinction between directives, opcodes and symbolic
labels are obvious.

The burden imposed on the programmer by these conventions are simply stated:

• If a symbol defines an address label or numeric quantity, it must begin in the first
column,

• If a symbol is a directive, it begins with a period,

• If a symbol is an opcode, it uses standard 65xx mnemonics, and must NOT begin in
the first column,

• Comments are preceded by a semicolon,

• Blank lines may be used to separate code or data sections.

With these rules, and with the appropriate assembler directives, the output listings can
be formatted for maximum clarity and ease of analysis. There is never any ambiguity
between labels, directives and opcode mnemonics. See Chapter 3 for more on the assembler
line format and Section 3.4 for information on the allowable characters and restrictions on
symbolic labels.
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Chapter 2

Getting Started

2.1 Installing cbA65

The assembler is provided as an executable file called, cba65.exe No additional support
files, other than the programmer’s source and include files, are required to complete an
assembly.

To install cbA65 simply create a folder on your chosen drive with a suitable name. Copy
cba65.exe to the folder. A good strategy for managing multiple assembler projects is to
create a sub-folder below the one containing cbA65 for each project. Place the appropriate
source and include files in the folder and add the location of the assembler to the operating
system search path. With this method, simply go to the desired project folder and call the
assembler from there. The output files will be written in this folder.

2.2 Assembling a Source File

Source code assembly requires four passes over the source file. These perform the following
functions:

Pass 1 — Expand include files and build symbol table, check for syntax errors and
duplicate labels.

Pass 2 — Trial assembly, check for size inconsistencies, issue warnings, output .ECHO
messages.
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Pass 3 — Resolve forward references, report range and phase errors.

Pass 4 — Final assembly, resolve phase errors, generate listing, log and object files.

To invoke the assembler for a typical application type:3

C:[path]>cba65 mycode.cba

where [path] is the current path and mycode.cba is the name of the user’s source file.
Including the extender with the filename is optional. Although it is not necessary to type
the extender, cbA65 will only accept source files whose extender matches “cba”. This
restriction minimizes the possibility of mixing files meant for different assemblers.

It is also possible to invoke the assembler by simply typing

C:[path]>cba65

at the DOS prompt.

In this case, the assembler will prompt the user for the source filename. Again, typing the
extender is not required.

See the chapter on output files for a complete description of all files generated by the
assembler.

2.3 Command Line Options

Unlike most assemblers, cbA65 uses the command line solely to identify the name of the
source file and to specify the assembler configuration options. No command line options
are used to specify the output file types or the listing format. The reason for this option
management strategy is to assure that the assembly as at least partially self-documented in
the source and listing files. That is, any customization specifications must be made in the
source file and will therefore be printed in the listing file. At any time it can be determined
exactly how the programmer configured the options. See the section on directives for a
complete list of the file control directives and options.

The assembler configuration options control the maximum allowed number of symbols and
anonymous labels. The following example illustrates their use.

C:[path]>cba65 myfile -a=600 -s=2000

7



Here, the file myfile.cba will be assembled, with the assembler set to allow 600 (a)nonymous
labels and 2000 (s)ymbolic labels. The default values are 500 and 1000, respectively. Note
that the options are separated by spaces but may not contain spaces.

Several variants of the above syntax are allowed:

• Either or both of these options may be omitted.

• The hyphen – may be replaced with a forward slash /.

• The equal sign = may be omitted or replaced with colon :.

• The command line parameters may appear in any order.

The assembler configuration options are only available if the assembler is invoked on the
command line. If the assembler is started with no command line parameters, the user will
be prompted for the filename but no options will be accepted. The default values will the
used in this case.

2.4 About Errors and Warnings

Writing code for any processor is typically an iterative or recursive process. Code is writ-
ten and assembled. Errors in the source files are identified and corrected. Code is then
reassembled. This process is repeated until no further errors are found. Then the code is
run or emulated. If logic errors are found, they are corrected and the process begins anew.
When everything is working as required, the process terminates.

A key requirement for a viable programming environment is the ability to locate and identify
various kinds of errors. cbA65 provides elementary but critical support for error detection.

The assembler marks its progress by printing the pass number to the screen at each stage
of the assembly. Certain warnings may be displayed during the assembly, but if fatal errors
occur the assembly will be aborted.1 In this case an error message will be given which
identifies the type of error and the file and line number at which the error occurred. See
Chapter 6 for a detailed explanation of the error messages.

cbA65 can also issue advisory or informational messages chosen by the programmer using
the .ECHO directive at critical points in the program text. This directive is executed during
assembler pass 2, and prints the appended message to the screen.

1With cbA65 a warning is a rule violation which may not invalidate the object code. An error renders
the object code invalid.
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Chapter 3

Assembler Syntax

cbA65 is a line oriented assembler with formatting rules which facilitate ease of program-
ming and readability of the output listings. The assembler is not case-sensitive, so you may
write your files using conventions which you prefer. The output listings will retain the case
you specify in your code, but don’t forget that the assembler ignores case when identifying
or manipulating symbolic values.

The source file line format generally follows one of the following schemes:

LABEL OPCODE [OPERANDS] [COMMENT]

or

DIRECTIVE [OPTIONS[ARGUMENTS]] [COMMENT]

A number of variations are possible, such as:

LABEL

LABEL .EQU [EXPRESSION]

OPCODE [OPERAND]

COMMENT

DIRECTIVE

BLANK

9



where COMMENT consists of ASCII characters preceded by a semicolon. Bracketed
terms are optional in each line format.

OPCODE must not appear in the first column, as explained earlier.

For variable assignments, cbA65 uses the .EQU directive. Each label must be unique, or a
fatal error will be reported. The value assigned to the label may be any valid expression
which may include other symbols.

The maximum line length supported by cbA65 is controlled by the COLS option for the
.PRINT directive. See Section 3.6 for details.

3.1 Source File Format

A minimal source file might be as simple as the following:

.org $200
brk
.end

This file will assemble without errors and produce all default output files. Here is an example
of a somewhat more useful source file:

;
; upper.cba -- convert null terminated string in include file to upper case
;

.org $200
ldx #0

start lda mystr,x ; get next character
beq stop
and #$20 ; convert to upper case...
sta mystr,x ; ...and save it
inx
bne start

stop brk
.org $300

mystr .include message.inc
.end

10



No matter how complex the source file, the simple line formatting rules will apply to each
line.

Every source program must contain an .ORG directive before any instructions which generate
code or data. Otherwise an error message will be issued. See Section 3.7 for accessing the
location counter to specify program addresses.

3.2 Constants

Constants consist of numeric quantities or ASCII characters and may be declared in
several formats. For the 65xx family numeric constants are either 8-bit or 16-bit quantities.
Symbols assigned to represent constants will be interpreted as the numbers they represent.

3.2.1 Numeric Constants

The default radix for numeric constants is decimal. Ordinary decimal integers may appear
anywhere a numeric value is needed. Floating point numbers are not supported.

Hexadecimal numbers are distinguished by a leading $ character, as

in

lda #$45
jmp $8000

Valid hexadecimal digits include the decimal digits and the characters A through F or a-f.

Binary numbers are indicated by a leading % character.

lomask .equ %00001111
himask .equ %11110000

Only the digits 0 and 1 are recognized in binary constants. In this example, the numeric
values of the constants have been assigned to symbolic labels.

11



3.2.2 Character Constants

An ASCII character may be enclosed in single quotes to reference its numeric value. For
example

lda num,x ; get next ASCII digit
sec
sbc #’0’ ; convert to numeric value

which gets the 8-bit numeric value of a digit from its ASCII representation. The complete
ASCII character set is printed in Appendix C

Generally, the trailing quote is not really needed to identify a character constant and may
be omitted.

3.3 Character Strings

Strings consist of ASCII characters and are most often used to represent readable text.
Strings may be placed in the output file with the .TEXT directive and are specified by
surrounding the text with double quote or single quote symbols. Some examples are:

greet .text "Hello, universe!"
warn .text ’Caution! Memory almost full.’

If it is necessary to place a single or double quote within the string, you may use the other
one as the delimiter.

mystr .text "Don’t stop."

Although it is possible to handle strings which contain both delimiters by splitting the string
into pieces, cbA65 provides a better solution. In fact, you may choose your own delimiter
to enclose strings. The first non-space character encountered after the .TEXT directive is
taken as the string delimiter, and any other characters may be entered until the chosen
delimiter appears again.1

Here is an example which uses the at sign @ as a delimiter:
1An exception is that you cannot use a semicolon as a delimiter.
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teststr .text @"Paddy O’Furniture"@

In this case, the double quotes are included in the resulting string.

Multiple comma-separated strings may be placed on the same line as follows:

monst .text "It’s"," alive!"

but note that the strings will simply be concatenated. Unterminated strings on consecu-
tive lines will also be effectively concatenated, since they are simply placed in consecutive
memory locations.

The directive .STR is an alternate to .TEXT and has the same syntax. There are also
two variants .STRA and .STRZ which automatically append terminators to the text. See
Section 3.6.3 for more on terminated strings.

3.4 Symbols

The symbols used by cbA65 are taken from the standard ASCII character set. Some of
these symbols, e.g. the alphabetic characters, are normally used for symbolic labels, CPU
mnemonics, directives and comments. The numeric and some of the punctuation characters
may have special meanings in particular contexts. These are explained in the next sections.

3.4.1 Labels

Labels are symbolic objects which stand for numeric values, program addresses or other
values. They must begin with an alphabetic character or an underscore . The allowable
characters after the first include alphabetic characters, numeric digits, the underscore, the
@ sign , the question mark, the colon and the period in any order.

A-Z a-z 0-9 _ @ ? :

Here are a few valid labels.

• Port A

• query???
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• Two.by.two

• AUTO

Here are a few invalid labels.

• ?HELP

• 2PI

• N*F*G

• on/off

Labels are limited in length to 12 characters. Labels which are longer than this will be
truncated with an assembler warning. Assembly will not be terminated as a consequence
of label truncation, but there is a possibility of incorrect treatment of long labels which are
similar in the first twelve characters.

3.4.2 Operators

Operators are used in arithmetic or logical expressions to indicate which operations are to
be performed on the associated operand(s). cbA65 uses accepted operator precedence rules
to correctly evaluate math expressions, regardless of complexity. Parentheses are supported
so that ambiguous or conflicting precedence requirements can be resolved.

For example, unary minus is supported to allow the manipulation of negative numbers as
in

NCOUNT .equ -COUNT

The unary minus is tightly bound so the following two expressions involving the unary
minus produce different results.

COUNT .equ 63
NUM1 .equ -COUNT-1
NUM2 .equ -(COUNT-1)

In the above example, NUM1 evaluates to -64, and NUM2 evaluates to -62.

A summary of the precedence rules for all arithmetic, logical and relational operators can
be found in Section 3.4.3.
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Arithmetic Operators

The math (arithmetic) operators recognized by cbA65 are + - * / % which represent add,
subtract, multiply, divide and mod operations, respectively. These are all binary operators
which retain their ordinary meaning when applied to integers.2 Note that mod returns the
remainder after an integer division, and that an integer divide discards the remainder.

There are also a few unary math operators which can precede an argument or expression.
These are + - ~ where ˜ returns the one’s complement of the expression which follows.

Bitwise Operators

Bitwise operators are binary operators which operate on each bit in an integer individually.
They are & | ^ SHL SHR which represent and, or, exclusive or (xor), shift left and shift
right, respectively. Note that the math operator ˜ may also be considered a unary bitwise
operator, since it also operates on the individual bits of the argument which follows.

Logical Operators

Logical operators operate on boolean quantities which only take on two values. These
two values are variously symbolized as (1,0), (yes,no), (true,false), (on,off) depending on
context. These operators are useful in decision and control logic and differ from the bitwise
operators.

The binary logical operators are AND OR XOR . Truth tables defining their behavior are
shown in Fig. 3.1. Although the logical operators are particularly useful in assemblers

AND
A B A · B
0 0 0
0 1 0
1 0 0
1 1 1

OR
A B A + B
0 0 0
0 1 1
1 0 1
1 1 1

XOR
A B A ⊕ B
0 0 0
0 1 1
1 0 1
1 1 0

Figure 3.1: Logical Operators

which support conditional assembly they may also be used to communicate compile time
details to the program. See next section for an example.

2An integer, in this context, is an 8-bit byte or 16-bit word.

15



Relational Operators

In addition to the math and logical operators there are operators which are referred to
as relational operators. These operators return the result of comparing two arguments or
expressions for a specific relation. The result returned is either 1 or 0 depending on whether
the relation was or was not satisfied. There are no unary relational operators.

The relational operators are LT LE EQ NEQ GE GT , which test for the quantity to the left
of it is less than, less or equal, equal, not equal,greater or equal and greater than the quantity
to the right.

Consider the following:

lda #(tptr lt 128)

which will load the accumulator with ‘1’ if the location of tptr is in the lower half of page
zero, and ‘0’ otherwise.

Special Unary Operators

cbA65 supports two special unary operators which are useful in an 8-bit processor environ-
ment with 16-bit addressing: < and >. These unary operators return the low or high bytes
of a 16-bit argument, respectively. This is extremely useful when constructing pointers to
addresses in zero page or elsewhere.
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3.4.3 Precedence Rules

The operator precedence used by the cbA65 parser

highest ( )
+ - ~ < > NOT (unary operators)
* / %
+ -
SHL SHR
LT LE GE GT
EQ NEQ
&
^
|
AND

lowest OR XOR

Figure 3.2: Operator Precedence Chart

3.4.4 Special Characters

Certain characters perform unique roles in determining the values of constants in expressions
or opcodes.

The # character, often called a hash mark or pound sign is used to signify ‘immediate’
addressing mode. This is a disambiguating operator which tells the assembler that the
numeric value following is an immediate mode operand and not a variable representing a
memory location.3

The < and > operators signify that the low byte or high byte of the following symbol is
to be taken and is used as an immediate operand. Since these are also a disambiguating
operators, the # is not necessary and may be omitted.

As explained elsewhere, the $ sign signifies a hexadecimal number, as opposed to an ordinary
decimal number. Binary numbers are specified using the % prefix. Octal numbers are not
supported.

The grave accent ‘ tells the assembler to use 16-bit(absolute) addressing modes instead of
3The default is to interpret any number or symbol representing a number as a memory location.
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the 8-bit (zero page) modes.4 This is used to override the default addressing mode when
conditions require it. See Section 3.5.

3.5 Expressions

In this section, the types of expressions which the assembler handles are explained and some
examples are given.

The simplest expressions involve the arithmetic operators. For example:

lda numtable+8

will load the accumulator with the eighth byte of numtable.

To create a variable indicating the length of a string, simple place a label at the location
following the string and write an appropriate expression.

strlen .equ str2 - str1 ; get length of string 1
.
.
.

str1 .str "This is a test string"
str2 .str "Another string."

.

.

Complex expressions may require parentheses to parse correctly.

nument .equ (tblend-tblstart)/sz ; get number of entries in table
magic .equ (mnum ^ $ff) & $f ; compute magic number

Numbers may be mixed with ASCII characters.

lda #’A’+128 ; set high bit

4This symbol is usually located on the same key as the tilde ~ key, at the left of the keyboard.
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Overriding Zero Page Opcodes

Many of the 65xx instructions exist in two versions, depending on whether the address in
the operand can be specified with an 8-bit value or must be specified with a 16-bit value.
The assembler determines the size of the operand and, if the quantity can be stored in 1
byte, will code the zero page version of these opcodes. The zero page versions are faster
and shorter, so this strategy is generally optimal.

However, there are times when it is desirable to force the 16-bit version of the instruction,
even though the operand does not require it. For example, in sections of self-modifying code
it may be necessary to allow for 16-bit addresses even though the address may be initially
in page zero. In other cases there may a cycle counting requirement which is better served
with the 16-bit version, even though the address remains in page zero.

To allow for these special cases cbA65 permits the programmer to force the 16-bit version
by flagging the operand with a leading grave accent ‘.

000016 0213 A5 80 lda $80 ; allow zero page addressing
000017 0215 AD 80 00 lda ‘$80 ; force 16-bit address

This feature may also be useful when an address operand is specified using a pure number.
For example,

000354 0433 A5 FE lda -2 ; zero page default
000355 0435 AD FE FF lda ‘-2 ; force absolute address

3.6 Assembler Directives

.ALIGN – Moves program counter to next power-of-two boundary and, optionally, fills space
with desired character.

.BYTE – Places a list of 8-bit values at given address.

.DS – Reserves storage for specified number of bytes.

.ECHO – Prints text to terminal during Pass 2.

.END – Designates the end of the program.

.EQU – Assigns a numeric value to a symbolic label,
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.FILES – Allows specification of output file options.

.FILL – Fills memory with a given number of given character.

.INCLUDE – Specifies include file name and location.

.LIST – Enables generation of list file (default: TRUE).

.NOLIST – Cancels .LIST option.

.ORG – Sets the location of the program counter.

.PAGE – Eject current page.

.PRINT – Allows specification of list printing options.

.SKIPB – Place opcode $24 (BIT Z.P.) in output file to cause CPU to skip next byte.

.SKIPW – Place opcode $2C (BIT ABSOLUTE) in output file to cause CPU to skip next
word.

.STRA – Places a string at given address and adds carriage return/line feed terminator.

,STRX – Sets the high bit of the last character in the string.

.STRZ – Places a string at given address and adds NULL terminator.

.TEXT – Places an ASCII string at a given address.

.TITLE – Adds title strings to header of output listings.

.WORD – Places a list of 16-bit values at given address.

In addition to these directives, several synonyms are recognized. These are:

.BY – Same as .BYTE.

.DB – Same as .BYTE.

.DW – Same as .WORD.

.STR – Same as .TEXT.

.WO – Same as .WORD.
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3.6.1 File Control

Every assembly generates at least one output file. There will always be a filename.log file
associated with each run. The contents of this file are described in a Section 5.1. Several
options are available for specifying output files with special file formats. The list file is
important for aiding the programmer in developing, debugging and optimizing his code.
Other file formats are needed to permit execution of the code in different environments.
Common file formats are those used by hardware ROM and PROM programmers, or for
loading images of the software into computers or emulators.

cbA65 supports the following output file formats:

BIN – A raw binary dump intended for ROM applications.

H65 – A simple, text hex file format suitable for hand editing.

H6X – A CPU instruction oriented hex file format.

INTHEX – The Intel hex file format.

MOSHEX – MOS Technology hex file format.

MOTSREC – Motorola ‘S’ file format.

XREF – Program symbol cross reference file.

The list file is turned on or off with the .LIST or .NOLIST directive, respectively. These
directives may be placed as desired in the source file. The default is to generate a list file,
so unless the .NOLIST directive is encountered the full list file will written.

The other output file types are specified with the .FILES directive. Multiple selections are
comma separated. Any or all of the file types can be output during an assembly. Details of
each file format are in Chapter 5.

The syntax for the BIN file format is: BIN=ROMSIZE, where ROMSIZE is a numeric
quantity or expression equal to some power of 2. cbA65 will output a binary object file
containing the code and data generated by the program. If the binary object file exceeds
the specified ROM size, an error message will be issued. Otherwise the additional ROM
space, if any, will be padded with zeros and the ROM file written.

An example is:

.files h65,mot,bin=2048
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3.6.2 Listing Options

The basic control over the list file is managed by the .LIST and .NOLIST directives. These
turn the listing output on or off, respectively.

Print Options

Listing format controls and options are specified following a .PRINT directive. The print
options which pertain to the list file are:

CHKSUM – Print checksum over all object code at end of listing.

COLS – Specify maximum number of columns in listing. (Default is 78)

CSORT – Sort opcode statistics alphabetically or by frequency.

CYCLES – Print CPU cycle count at each instruction.

ROWS – Specify maximum number of rows per page in listing. (Default is 60)

SRCLINES – Print line numbers of source code lines or list lines. (Default is to print line
number of source files)

SSORT – Sort symbols alphabetically or by line number.

STATS – Print CPU statistics to log file.

XREF – Generate cross reference file.

Here is an example of a directive used to adjust the page format.

.print cols 118,rows 66

Note that the .PRINT directive supports options to specify the number of columns and
number of rows in each page of the listing. The COLS and ROWS options each take a single
parameter, which may follow an ASCII space  or equal sign =.

The basic output listing format attempts to provide an enhanced version of the original
source code with the object code and critical symbol values printed. A typical listing
format follows this scheme:
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LINE CURRENT CODE SOURCE
NUMBER ADDRESS (DATA) LINE..............................

00000345 0204 A9 45 wstrt lda #$45 ; do a warm start

The ‘LINE NUMBER’ refers the to current line in the active source file. ‘CURRENT
ADDRESS’ indicates the value in the program counter, ‘CODE (DATA)’ shows the opcode
and operands or other data associated with the source line. ‘SOURCE LINE’ is simply a
copy of the (possibly truncated) line in the source file.

A variation on the above format provides support for include files. For example,

LINE CURRENT CODE SOURCE
NUMBER ADDRESS (DATA) LINE..............................

000411 0204 =(516) .include regtbl.inc
i100001 0204 00 00 00 00 r1 .byte 0,0,0,0 ; temporary storage
i100002 0208 00 00 00 00 r2 .byte 0,0,0,0
i100003 020C 00 00 00 00 r3 .byte 0,0,0,0
000412 0210 4C 00 08 jmp init_regs

This strategy aids in identifying the exact line under assembly by the currently active file.
The format uses a lower case i in the leftmost column to flag the processing of an included
file. The ID number next to the i is the nesting level for this file (1-9). The remaining
numbers identify the actual source line number of the current line in the included file. When
the file has been read, the line numbers revert back to those in the calling file. Notice that
this format makes it easy to debug from the listing, because there is no ambiguity in the
location of any line.

Include files may be nested up to nine levels deep without disturbing the listing format.
When the assembler detects errors, it can report their location by filename and line number.
See Section 4.1.

SRCLINES

This option controls whether the line number printed on the left side of the listing are listing
line numbers or source line numbers. The following two examples illustrate the difference.
In the first example, the lines are numbered by listing line.

lines.cba cbA65 v.1.00a, Feb 27 2008 -- Wed Feb 27 18:02:42 2008
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000001 ;
000002 ; lines.cba -- test for srclines listing option
000003 ;
000004 .print srclines=n
000005 0400 .org $400
000006 ;
000007 ; string storage
000008 ;
000009 0400 43 6F 63 6B msg1 .text "Cockpit error."
000010 0404 70 69 74 20
000011 0408 65 72 72 6F
000012 040C 72 2E
000013 040E 42 61 62 79 msg2 .text "Baby on board."
000014 0412 20 6F 6E 20
000015 0416 62 6F 61 72
000016 041A 64 2E
000017 .end

NUMBER OF SYMBOLS: 2

In the next example, the lines are listed by source file line.

lines.cba cbA65 v.1.00a, Feb 27 2008 -- Wed Feb 27 18:01:29 2008

000001 ;
000002 ; lines.cba -- test for srclines listing option
000003 ;
000004 .print srclines=y
000005 0400 .org $400
000006 ;
000007 ; string storage
000008 ;
000009 0400 43 6F 63 6B msg1 .text "Cockpit error."

0404 70 69 74 20
0408 65 72 72 6F
040C 72 2E

000010 040E 42 61 62 79 msg2 .text "Baby on board."
0412 20 6F 6E 20
0416 62 6F 61 72
041A 64 2E
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000011 .end

NUMBER OF SYMBOLS: 2

Either one of these formats may used, depending on the preference of the programmer. The
default is to print source line numbers.

STATS

This print option directs the assembler to print CPU statistics to the log file. These statistics
consists of opcode instruction counts, sorted alphabetically or by frequency. An example of
a log file with statistics include is shown below.

kimath.cba cbA65 v.1.00a, Feb 12 2008 -- Tue Feb 26 12:56:55 2008

Pass 1: OK
Pass 2: OK
Pass 3: OK
Pass 4: OK

TITLE: KIMATH ROUTINES, MOS TECHNOLOGY

ROMSIZE = 2048, LOROM = 63488, HIROM = 65518
NUMBER OF SOURCE LINES: 1252
NUMBER OF LISTING LINES: 1289
NUMBER OF SYMBOLS: 238
NUMBER OF UNREFERENCED LABELS: 34
NUMBER OF REFERENCES: 586
NUMBER OF ANONYMOUS LABELS: 0
NUMBER OF ASSEMBLER WARNINGS: 0
MAX. INCLUDE FILE NESTING LEVEL: 0
NUMBER OF CPU INSTRUCTIONS: 824

OPCODE USAGE SUMMARY (SORTED BY OPCODE COUNT):

MNEMONIC OPCODE COUNT MNEMONIC OPCODE COUNT MNEMONIC OPCODE COUNT
--------------------- --------------------- ---------------------
JSR nn 20 0114 LDA #n A9 0065 RTS 60 0048
STA nn 8D 0042 STA n 85 0041 LDA nn AD 0036
BNE n D0 0032 DEX CA 0030 JMP nn 4C 0028
STA nn,X 9D 0027 BPL n 10 0026 LDA n A5 0025
BEQ n F0 0024 LDA nn,X BD 0023 LSR 4A 0018
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LDX n A6 0018 LDX #n A2 0013 AND #n 29 0012
BCC n 90 0011 INY C8 0010 SEC 38 0010
LDA (n),Y B1 0009 ADC #n 69 0009 INX E8 0009
BIT nn 2C 0009 ASL 0A 0008 STA (n),Y 91 0007
BVC n 50 0006 BVS n 70 0006 DEC n C6 0006
BCS n B0 0006 SED F8 0006 CLC 18 0005
SBC #n E9 0005 BMI n 30 0005 INC n E6 0005
LDY #n A0 0004 ASL n 06 0004 PHA 48 0004
PLA 68 0004 SBC nn ED 0004 ORA #n 09 0004
BIT n 24 0004 CPY n C4 0003 EOR #n 49 0003
ORA nn 0D 0003 CMP #n C9 0003 ADC nn 6D 0002
LDY n A4 0002 CPX n E4 0002 AND nn 2D 0002
STY n 84 0002 CMP n C5 0002 EOR nn 4D 0002
TAX AA 0002 STX n 86 0002 SBC nn,X FD 0002
LDY nn,X BC 0001 CLD D8 0001 STA nn,Y 99 0001
ORA n 05 0001 ADC nn,X 7D 0001 ORA nn,X 1D 0001
ADC n 65 0001 TYA 98 0001 LDA nn,Y B9 0001
CMP nn CD 0001

CSORT

The chart of the opcode usage was sorted by frequency of use. It is also possible to sort the
list alphabetically using the CSORT option of the .PRINT directive. CSORT takes a parameter
‘A’ or ‘F’ which specifies to sort alphabetically or by frequency. The default is to sort by
frequency. Syntax for the CSORT option of the .PRINT directive is CSORT=A for alphabetical
sort.

CHKSUM

This option for the .PRINT directive causes a checksum to be appended to the listing file.
The checksum consists of the least significant 4 hex digits of the simple sum of all object
code generated during the assembly.

3.6.3 Data Storage

8-Bit Numeric or Character Constants

There are several directives which can be used to allocate storage. Data types which may
be placed at desired locations in the program space include 8-bit bytes, 16-bit words, 8-bit
ASCII characters and strings.
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The basic directive which applies to 8-bit numeric quantities is written .BYTE. It may also
be specified using .BY or .DB. An example is:

mul3tbl .byte 0,3,6,9,12,15,18,21,24 ; multiples of 3
.byte 27,30,33,36

Bytes may be specified using hex notation or ASCII characters, as well.

hex2asc .by ’0’,’1’,’2’,’3’,’4’,’5’,’6’,’7’
.by ’8’,’9’,’A’,’B’,’C’,’D’,’E’,’F’

lohi .by $0,$10,$20,$30,$40.$50,$60,$70

16-Bit Values

For 16-bit numeric quantities, use the .WORD directive. The assembler will also accept .WO
and .DW for 16-bit quantities.

jmptbl .dw add,sub,mul,div
lval .dw ’A’,’B’,’C’,0,1,2,3
magic .dw $1234

Note that program addresses may be declared and will be stored in low, high order. If 8
bit quantities, such as ASCII characters, are declared, they will be expanded to 16 bits.

ASCII Strings

The directives .TEXT and .STR are used to embed ASCII character strings in the program.
Upper case and lower case values are retained in the resulting code.

For some applications, it is useful to terminate the strings with a more-or-less standard
terminator. A common termination consists of a carriage return (ASCII value: 13) followed
by a line feed (ASCII value: 10). This termination can be automatically appended to the
string by invoking the .STRA directive followed by the desired text enclosed in quotes.

Another common termination strategy uses a simple ASCII NULL (ASCII value: 0) follow-
ing the text. This can be automatically appended by invoking the .STRZ directive.
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String lists of program keywords are sometimes coded with the last character in each word
altered by setting the high bit to ’1’. For example, the character ’A’, which is 65 ($41) in
the ASCII symbol set becomes 65 + 128 = 193 ($C1). This technique facilitates counting
or tokenizing the keywords. cbA65 automates this method with a special string directive
.STRX.

Other termination schemes can be implemented by the programmer by simply outputting
the raw ASCII string and appending the desired terminator(s) using the .BYTE directive.

Fill Directive

The .FILL directive is used to fill a block of memory with a user specified byte value or
ASCII character. This directive takes two parameters: first, a count of the number of bytes
to fill and, second, the value of the fill byte. Either of these quantites may be defined by
expressions, as in this example.

.org $700

.fill 16,$ea
thisloc .fill thatloc-thisloc,’A’

.align 64
thatloc brk

The result of using these directives is shown below. Note that the srclines=y printing
option was in effect.

000069 0700 EA EA EA EA .fill 16,$ea
0704 EA EA EA EA
0708 EA EA EA EA
070C EA EA EA EA

000070 0710 41 41 41 41 thisloc .fill thatloc-thisloc,’A’
0714 41 41 41 41
0718 41 41 41 41
071C 41 41 41 41
0720 41 41 41 41
0724 41 41 41 41
0728 41 41 41 41
072C 41 41 41 41
0730 41 41 41 41
0734 41 41 41 41
0738 41 41 41 41

28



073C 41 41 41 41
000071 0740 .align 64
000072 0740 00 thatloc brk

3.6.4 Alignment

It is often necessary to force data blocks into alignment with specific address boundaries.
The simplest example for the 65xx processors is to require alignment to even addresses
for indirect jump tables. This strategy assures that no two-byte address will cross a page
boundary.

The .ALIGN directive takes a single parameter which forcesthe program counter to advance
to the next aligned value. This parameter must be a power of two. For the previous
example, .ALIGN 2 will force the address to the next even address. If the current address
is already even, no action is taken.

Another example occurs when a table of values should begin on a 256-byte page boundary
so that the index does not cross pages. We see this most often when access to tables must
take place under cycle count control. Use .ALIGN 256 to apply this directive.

.ALIGN also allows for a second parameter which is used to specify a fill byte. If no second
parameter is entered, the program counter is simply moved to the new, aligned location. If
it is necessary to fill the space between location of the current program counter to the new
location, the following syntax is used:

.align 256,$ea

3.6.5 Cycle Counts

Cycle counts for each instruction can be included in the listing file when it is desired by the
programmer. It is an option for the .PRINT directive, as in the following:

.print cycles

A sample listing with cycle counts is shown in the following code snippet.

000680 .print cycles
000681 ;
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000682 ; Right shift rb cnt times.
000683 ;
000684 FBEE A5 03 ~3 rsbcnt lda cnt
000685 FBF0 F0 29 ~2= beq rbofe
000686 FBF2 A6 00 ~3 ldx n
000687 FBF4 BD 12 02 ~4, rsbc lda rb,x
000688 FBF7 9D 13 02 ~5 sta rb+1,x
000689 FBFA CA ~2 dex
000690 FBFB 10 F7 ~2- bpl rsbc
000691 FBFD A9 00 ~2 lda #0
000692 FBFF 8D 12 02 ~4 sta rb
000693 FC02 C6 03 ~5 dec cnt
000694 FC04 D0 E8 ~2= bne rsbcnt
000695 FC06 60 ~6 rts

The cycle counts are identified by a preceding tilde ˜ symbol. Following the base count
value may be a symbol representing additional cycles which are incurred by indexing or
branching across a page boundary.

Branching Information Symbols

Although the assembler has no way of knowing whether a branch will always take place, it
can tell whether a page crossing will be involved. Hence, the symbol following the base cycle
value for a branch instruction will consist of a hyphen - or equal sign = . These indicate
whether there will be an additional one cycle or two cycle penalty for taking the branch.
All cycle counts for branch instructions will be followed by a hyphen or equal sign. Use
the base count when no branch occurs and add additional one or two counts as appropriate
when calculating the total cycle count for the branch.

Indexing Information Symbols

There is also a penalty for indexing across a page boundary for some instructions.5

The assembler cannot determine the run-time index values so it cannot tell whether the
page-crossing penalty will always be invoked. However, it uses a heuristic argument to

5The indexed ASL, DEC, INC, LSR, ROL, ROR, STA, STX, STY instructions do not incur page crossing
penalties.
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signal to the programmer that a page crossing is likely or unlikely when the base address is
known, as in the absolute indexed operations.

Since the index is always regarded as a positive number by the CPU, page crossings will
always be in the forward (upward in memory) directions. Note that if the base address is
on a page boundary, e.g., $0800 no page crossing can ever occur. In fact, the likelihood
of incurring a page crossing penalty is increased as the base address moves to a higher
level within a page. The assembler resolves base addresses during the assembly and can
provide an indicator to the programmer when the base address provides a large or small
headroom for indexing. cbA65 does this by placing a comma , or apostrophe ’ after the base
cycle count. The comma indicates at least a half a page of headroom, and the apostrophe
indicates less than half a page of headroom. Hence, a comma means that a page crossing
penalty is unlikely, and an apostrophe means it is likely.

This indicator should not be taken too literally, as individual cases will determine actual
performance. However, you’ll find that quick scan of a listing can alert you to indexing
situations that may benefit from data relocation or realignment of tables. In any case, the
strategy fails for indirect indexing because the base address is not known at compile time.
For these instructions no penalty assessment is attempted.

Summary of Symbols Used in Cycle and Branch Counting

The following table shows all special symbols used to support cycle counting and their
meanings:

Symbols Meaning
~ Base cycle count follows (one digit)
- Branch requires 1 additional cycle
= Branch across page boundary requires 2 additional cycles
’ Indexing over a page boundary is likely requiring an additional cycle
, Indexing over a page boundary is unlikely

3.6.6 Miscellaneous Directive Examples

.TITLE

The .TITLE directive provides the programmer with a means to specify the header printed
on each page of the listing. An example of its use is
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.title "Floating Point Routines by J. Slick, (C) 2002"

where all characters, including the quotes will be printed in the header of each listing page.

If no quotes are used delimit the title string, it will be converted to uppercase in each
header.

.EQU

This assignment directive is used to associate labels with numeric values. The directive may
be followed by any valid expression including numbers operators or other symbolic labels.
A few examples are:

portA .equ $d840
ptr1 .equ $88
maxbyte .equ 255
tmplo .equ $420
tmphi .equ tmplo+1

When these lines are written to the list file, cbA65 will print both the hex and decimal
values of the labels.6

.ECHO

The .ECHO directive provides a means to trace the progress of an assembly. During pass 2,
and only pass 2, the .ECHO directives are processed. Any text which follows this directive
will be printed to the screen and in the log file at this time. Hence, it may be used to place
visible progress markers in the file.

Example:

.echo "start of tables"

.PAGE

.PAGE causes the listing file to terminate the current page, print the footer and begin a
new page. This formatting directive may be useful to separate code or data sections in the
printout.

6Any label which is defined on a line with no output code will be displayed in the listing file with both
hex and decimal values.
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.SKIPB and .SKIPW

These directives use a common trick to provide multiple entry points to a routine with
different parameters preselected. The idea is based on the observation that the 65xx BIT
instructions set flags but otherwise do not modify registers. They exist in zero page and
absolute versions. This example of a program listing shows how the directives might be
used to print a carriage routine or line feed to a printer.

000058 0233 A9 0D prtcr lda #cr
000059 0235 2C .skipw
000060 0236 A9 0A prtlf lda #lf
000061 0238 20 41 07 jsr prtchr

In this example entry at prtlf will output a line feed. Entry at prtcr will output a carriage
return, but will not output a line feed. This is because the .SKIPW directive has placed a BIT
absolute instruction which interprets the next two bytes as an address to read, effectively
skipping the lda #lf instruction. This method can be cascaded to provide multiple entry
points.

Caution: this technique is not entirely free of questionable side effects. It is possible that
act of reading an arbitrary address could be interpreted by a hardware location as part of
a handshaking protocol. The programmer should assume responsibility of examining the
listings to ensure that no improper memory accesses will occur.

The possibility of problems is extremely low, and the caution cited should not discourage
the use of this directive.

.DS

This directive reserves storage by advancing the program the given number of locations. It
takes a single parameter specifying the number of bytes to reserve. The following example
shows how a group of 8-byte registers might be allocated.

; reserve three working registers for floating point ops
wr1 .ds 8
wr2 .ds 8
wr3 .ds 8
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3.7 Location Counter (Program Counter)

The location or program counter can be accessed at any point in a program with the symbol
*. This symbol allows the counter to be modified or assigned to a label. It is possible to
use the * symbol in place of an .ORG directive as shown in the following snippet.

* = $C0
ptr1 * = *+2
ptr2 * = *+2

* = $200
lda #0
rts

Note that the symbol for the location counter, which specifies the current address, is the
same as the symbol for multiplication. No ambiguity exists, however, because multiplication
only occurs within an expression, and the location counter is only referenced immediately
before or after an equal sign.

3.8 Branch Targets

Branch targets may be specified with a symbolic memory reference or label. Provided the
target is within the branch range of the CPU you may specify any labeled address. An
error will be reported if the target is out of range.

You may also specify the target address with an immediate value giving the offset of the
address from the next CPU instruction. This requires prefixing a #symbol before the numeric
value. A numeric value without the immediate mode prefix is an error.

Recall that with relative branching, a value of zero (0) refers to the address of the next
instruction. An infinite loop will result if the branch is ever taken in the following code,
because it branches back to same instruction:

bne #$fe ; trap!!!

3.8.1 Anonymous Labels

Anonymous labels are also supported. These labels are identified by using the at sign
@ as a label. They may be placed at any address containing an executable CPU opcode.
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Anonymous labels are referenced by using an @F, for a forward branch, or @B for a backward
branch as an operand for the branch instructions.

Anonymous labels provide a means to identify memory addresses without the need to invent
a symbolic name for each location. This capability is useful for code that involves many
compare and branch loops which force the programmer to resort to using arbitrary numbers
in labels to distinguish them from each other.

The special character, @, is used to flag the current memory location to the assembler. These
labels are accessed by tracking their proximity to a nearby branch instruction reference. For
example, bne @F will access the first anonymous label, @, following it. Similarly, bcs @B
will access the first anonymous label preceding it.

An extension to the use of anonymous labels allows skipping a number of labels in either
direction by appending a numeric value after the branch direction identifier (F or B).

Here is some sample code showing a possible application of anonymous labels:

; convert HEX digit in lower nibble to ASCII
cnvlo ldx #7
@ lda r1,x

and #$0f
ora #$30
cmp #$3A ; numeral?
bcc @F ; yes, no correction needed
adc #6 ; convert to ASCII A-F (carry is set)

@ jsr prtchr
dex
bpl @B1
rts

While it would be a bad programming practice to allow large distances between branch
instructions or complicated interlacing of the anonymous labels they reference, short code
sections such as the above relieve the programmer of having to invent symbolic names simply
to appease the assembler. The basic rule is to use anonymous labels only when the branch
targets are nearby and easily visible on the screen or printout.

It is worth noting that some programmers rely heavily on meaningful labels as a substitute
for the liberal use of comments to explain their code. This is hardly optimal because
of the terse form of symbolic labels. With anonymous labels there isn’t much choice for
documenting the code except to add comments. This is probably for the better, because
labels such as PLOADY, UGTRES0, etc. quickly lose their significance.
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To minimize the potential for abusing this feature, only branching and not jumping to
anonymous labels is supported.

3.8.2 Range Errors

Range errors only occur when branch instructions attempt to access a program location
which is beyond reach from the current address. Recall that a branch distance of 0 simply
targets the next instruction following the branch instruction. The branch distance is a
signed quantity and can extend from −128 bytes to 127 bytes from the address of the next
instruction. If the distance to the target exceeds the allowable range, a range error will be
reported by the assembler. See Chapter 6 for more information on assembler error reporting.

Note that if the branch operand is entered as an 8-bit immediate value, instead of a symbolic
one, no branch error should occur.
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Chapter 4

Source Files

Assembler source files are ASCII text files which comply with the syntax rules for cbA65.
The filename must have a .cba extender. The two requirements for all source files are that
the file must contain an .ORG1 directive before generation of any code or data and must
contain an .END directive at the end.

Although each program will be associated with a single master source file, there may be
any number of other files included to complete the program. This simplifies the sharing
of critical modules among different programs. See Section 4.1 for a further discussion on
include files.

4.1 Include Files

The syntax requirements for include files are somewhat relaxed from those of source files.
First, no restrictions on the filename or its extender are imposed. Second, include files
occupy a limited space within the source file and only need to comply with the syntax
requirements of the source file over that region. In other words, if the source file already
has specified the value of the program counter, no .ORG directive is required in the include
file. On the other hand, the include file may contain any valid directives or instructions.

Include files may be nested up to 9 levels. This should be sufficient for any reasonable
application. cbA65 keeps track of the nesting levels and the filenames at each level and
can report any errors it detects by filename and file line number.

1It is possible to substitute a program counter assignment for the .ORG directive.
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Here is an example of a simple program which uses include files nested to 2 levels.

;
; nestinc.cba -- example of nested include files.
;

.org $200
cmp #0
bne @f
jmp fadd

@ cmp #1
bne @f
jmp fsub

@ brk
;
; number storage

.org $400

.include mathcon.inc
fadd brk
fsub brk

.end

This is the contents of mathcon.inc,

k0 .byte $00,$00,$00,$00,$00,$00,$00,$00
k1 .byte $00,$00,$10,$00,$00,$00,$00,$00

.include pi.inc
sq2 .byte $00,$00,$14,$14,$21,$35,$62,$37

and this is the contents of pi.inc.

pi .byte $00,$00,$31,$41,$59,$26,$53,$59

The listing file, with the default srclines=y printing option, looks like this.

nestinc.cba cbA65 v.1.00a, Feb 28 2008 -- Thu Feb 28 08:59:11 2008

000001 ;
000002 ; nest0.cba -- example of nested include files.
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000003 ;
000004 0200 .org $200
000005 0200 C9 00 cmp #0
000006 0202 D0 03 bne @f
000007 0204 4C 20 04 jmp fadd
000008 0207 C9 01 @ cmp #1
000009 0209 D0 03 bne @f
000010 020B 4C 21 04 jmp fsub
000011 020E 00 @ brk
000012 ;
000013 ; number storage
000014 0400 .org $400
000015 .include mathcon.inc
i100001 0400 00 00 00 00 k0 .byte $00,$00,$00,$00,$00,$00,$00,$00

0404 00 00 00 00
i100002 0408 00 00 10 00 k1 .byte $00,$00,$10,$00,$00,$00,$00,$00

040C 00 00 00 00
i100003 .include pi.inc
i200001 0410 00 00 31 41 pi .byte $00,$00,$31,$41,$59,$26,$53,$59

0414 59 26 53 59
i100004 0418 00 00 14 14 sq2 .byte $00,$00,$14,$14,$21,$35,$62,$37

041C 21 35 62 37
000016 0420 00 fadd brk
000017 0421 00 fsub brk
000018 .end

NUMBER OF SYMBOLS: 6

It is easy to follow the listing to determine which file is active and on which line each entry
is placed.
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Chapter 5

Output Files

In this chapter, a more complete discussion of the output files generated by cbA65 is
provided. Each of the file types is taken in order its major features are explained.

5.1 Log File

A log file is written every time cbA65 is run on a source file. The log file associated with
myfile.cba is myfile.log. Pass numbers along with errors and warnings are written to
the log file for later reference.

In the simplest cases with a successful assembly, the log file will consist of verifications for
each pass followed by a report of some program statistics. An example log file looks like:

upper.cba cbA65 v.1.00a, Feb 28 2008 -- Fri Feb 29 12:41:10 2008

Pass 1: OK
Pass 2:

WARNING! No .END directive. Assuming End-Of-File.
Pass 3: OK
Pass 4:

WARNING! Indirect operand crosses page in line 30 of file upper.cba
jmp (badaddr)

ADDRESS = $5FF
TITLE: "Test program with various snippets", NOT TO BE PUBLISHED
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CODE CHECKSUM: 0x65F4
NUMBER OF SOURCE LINES: 76
NUMBER OF LISTING LINES: 117
NUMBER OF SYMBOLS: 22
NUMBER OF UNREFERENCED LABELS: 10
NUMBER OF REFERENCES: 23
NUMBER OF ANONYMOUS LABELS: 2
NUMBER OF ASSEMBLER WARNINGS: 2
MAX. INCLUDE FILE NESTING LEVEL: 1
NUMBER OF CPU INSTRUCTIONS: 28

Notice that this log file contains two warnings. The first warns that no .END directive was
found. The second is that an indirect address crossing a page boundary was detected.

5.2 Program Listing

The program listing file is generally the most important of the output files written by any
assembler. It links the programmer’s source code with the machine code generated by the
assembler. It is invaluable for analyzing the output code, for detecting and correcting errors
and for general debugging or optimizing.

5.2.1 Listing File Format

Fig. 5.1 shows the format of a page of an output listing file.
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HEADER

BODY

FOOTER

Figure 5.1: Listing File Page Format
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toolkit.cba cbA65 v.1.00a, Feb 28 2008 -- Thu Mar 06 08:20:27 2008

"BASIC Programmer’s Toolkit for Commodore Pet BASIC v2.0"

000686 ; string for a match with one of the Toolkit commands. The count of the

000687 ; found command is used to index into a jump table, (TKADDRHI & TKADDRLO)

000688 ;

000689 B2DB A2 FF FNDCMD ldx #$FF

000690 B2DD E8 @ inx ; Scan buffer.

000691 B2DE BD 00 02 lda INBUFF,x

000692 B2E1 30 CC bmi MODCHK

000693 B2E3 C9 20 cmp #’ ’

000694 B2E5 F0 F6 beq @B ; Skip spaces.

000695 B2E7 B9 1A B3 CMDLP lda CMDLIST,y ; Get next character from

000696 B2EA F0 C3 beq MODCHK ; list of Toolkit cmds.

000697 B2EC 5D 00 02 eor INBUFF,x

000698 B2EF D0 04 bne @F

000699 B2F1 C8 iny ; Bump indices on every

000700 B2F2 E8 inx ; matched character.

000701 B2F3 10 F2 bpl CMDLP

000702 B2F5 C9 80 @ cmp #$80 ; Accept keyword if mismatch

000703 B2F7 F0 0A beq GOTTKN ; is caused by terminator.

000704 B2F9 C8 @ iny ; Otherwise skip characters

000705 B2FA B9 19 B3 lda CMDLIST-1,y ; to next keyword.

000706 B2FD 10 FA bpl @B

000707 B2FF E6 05 inc COUNT ; Update keyword counter.

000708 B301 D0 D8 bne FNDCMD ; Branch always (try next cmd).

000709 B303 E6 77 GOTTKN inc TXTPTR ; Bump TXTPTR past this

000710 B305 CA dex ; keyword. No need to bump

000711 B306 D0 FB bne GOTTKN ; high byte (always $02).

000712 B308 A6 05 ldx COUNT

000713 B30A E0 02 cpx #$02

000714 B30C 30 02 bmi @F

000715 B30E 68 pla

000716 B30F 68 pla

000717 B310 68 @ pla

000718 B311 BD 4E B3 lda TKADDRHI,x ; Execute Toolkit command.

000719 B314 48 pha

000720 B315 BD 59 B3 lda TKADDRLO,x

000721 B318 48 pha

000722 B319 60 rts

000723 ;

000724 ; This is the Toolkit keyword (command) list. The last character in each

000725 ; string has the high bit set to facilitate keyword counting.

000726 ;

000727 B31A 52 55 CE CMDLIST .strx ’RUN’

000728 B31D 41 55 54 CF .strx ’AUTO’

000729 B321 53 54 45 D0 .strx ’STEP’

000730 B325 54 52 41 43 .strx ’TRACE’

B329 C5

000731 B32A 4F 46 C6 .strx ’OFF’

000732 B32D 52 45 4E 55 .strx ’RENUMBER’

B331 4D 42 45 D2

000733 B335 44 45 4C 45 .strx ’DELETE’

B339 54 C5

000734 B33B 48 45 4C D0 .strx ’HELP’

000735 B33F 46 49 4E C4 .strx ’FIND’

page 14

SAMPLE PAGE OF LISTING FILE
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The header consists of an information line which documents the source file name, the
assembler version and the time and date. It also includes the title, as defined by the .TITLE
directive.

The footer consists of the current page number.

5.3 Cross Reference File

A cross reference file can be specified following either the .FILES or .PRINT directive by
including the XREF option. For example, .print xref will cause the assembler to
generate a cross reference file *.xrf which shows the line number where each symbolic label
was defined and all lines which reference this label.

A snippet from a cross reference file generated during assembly of the mathpac routines.

mathpac.cba cbA65 v.1.00a, Jan 5 2008 -- Sun Jan 06 07:43:19 2008

MATHPAC: A KIMATH SUPPLEMENT

SYMBOL SYMBOL SYMBOL SRC LINE CROSS
NUMBER NAME VALUE DEFINED REFERENCES

00000 ABS = 13587 ($3513) 709* 422 997
00001 ACOS = 13374 ($343E) 620* 999
00002 ADD = 63496 ($F808) 70* 394 418 462 475 527

567 581 595 627 646
799 969

00003 ADDL = 12799 ($31FF) 364* 356
00004 ADDM = 12804 ($3204) 367* 314 334
00005 ALOG = 13049 ($32F9) 483* 731 1001
00006 ALOG1 = 13061 ($3305) 488* 498
00007 ALOG2 = 13072 ($3310) 493* 484 487
00008 ALOG3 = 13125 ($3345) 518* 514
00009 ARC1 = 13538 ($34E2) 689* 687
00010 ARC2 = 13541 ($34E5) 690* 678
00011 ARCSET = 13513 ($34C9) 677* 620 628
00012 ARGYH = 9 ($0009) 19* 775 776 845
00013 ARGYL = 8 ($0008) 18* 93 101 145 160 169

772 773 842 859 945
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Note that the symbol address is printed in both decimal and hex for the convenience of
the programmer. Line numbers are all decimal.

The above listing shows the symbols sorted in alphabetical order. However, it is also possible
to specify sorting by the line number at which they were defined using the SSORT option
following the .PRINT directive.

The syntax for SSORT is: SSORT = char, where char is ’A’ or ’L’. ’A’ stands for alphabetical
symbol sort in the cross-reference file (*.xrf), and ’L’ stands for sorting by line number where
the symbol is defined. The default is to sort alphabetically.

5.4 Object files

In this section, a brief description of each of the object file types is given. These optional
additional files are specified as options to the .FILES directive.

5.4.1 H65 Format

This file type is intended to provide a printable version of the binary object file produced
by that assembler. It is a simple, ASCII hex translation of the object file which can be
easily edited by hand.

The file format is line oriented as shown in the following layout.

ADDR DATA
4 hex chars 16 pairs of hex chars

The address to load the following line of data or code is given as a 16-bit address expressed
as a 4-character hex number. The data consists of 8-bit bytes expressed as 2-character hex
numbers.

Here is an example of a typical *.h65 file.

B000 4C 7F B2 A9 0A 8D E2 03 A9 00 8D E3 03 85 83 85
B010 7C 85 81 A9 64 85 82 85 80 60 20 70 00 F0 32 B0
B020 17 20 73 C8 48 A5 12 A6 11 85 83 86 82 85 81 86
B030 80 68 F0 1D C9 2C F0 03 4C 03 CE 20 70 00 B0 F8
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No data type identification or control information is included in the file. No checksum is
present, so unrestricted editing is allowed.

Use H65 as an option in the .FILES directive to create this file.

5.4.2 H6X Format

This format is similar to the H65 format, except that the object code bytes are grouped
according to CPU opcodes. That is, if an opcode is output it is placed on its own line
after the memory address. All operands are placed on the same line. Data bytes are listed
individually one per line.

A portion of the H6X file corresponding to the previous file is given below.

B000 4C 7F B2
B003 A9 0A
B005 8D E2 03
B008 A9 00
B00A 8D E3 03
B00D 85 83
B00F 85 7C
B011 85 81
B013 A9 64
B015 85 82
B017 85 80
B019 60

Use H6X as an option in the .FILES directive to create this file.

5.4.3 Intel Hex Format

The Intel Hex file format was designed to facilitate the loading of binary object files into
RAM or other programmable memory space for use by processors, emulators, EPROM
programmers, etc. It provides an image of the binary file using only ASCII characters and
simplifies the transfer of those images from one device to another.

A complete description of the Intel Hex Format is given in Appendix F.

Use INTHEX as an option in the .FILES directive to create this file.
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5.4.4 MOS Technology Hex Format

MOS Technology developed a file format which is similar in purpose and structure to the
Intel Hex format. It differs primarily in the calculation of the checksum for each line in the
file.

Although this file format is little used, it is included for completeness. See Appendix G for
the file spec.

Use MOSHEX as an option in the .FILES directive to create this file.

5.4.5 Motorola S Record Format

The Motorola S-Record format is another printable file format which translates a binary
object file into an ASCII character form which is readable and easily transferred to other
systems. It is primarily intended for use in emulators and by EPROM programmers.

See Appendix H for complete details.

Use MOTSREC as an option in the .FILES directive to create this file.

5.4.6 Binary ROM Image Format

This format produces a binary image of the program. It is the programmer’s responsibility
to set the initial .ORG location to the appropriate value so the code symbolic addresses are
correct for the application. The file is padded up to nearest power of two, so the file length
matches typical ROM sizes. The maximum file size is 32768 bytes.

For ROM applications external symbolic addresses should be specified with the .EQU direc-
tive, so that no memory space is allocated. For example,

porta .equ $C000

will identify a port address without allocating any storage for it.

To create a binary object file suitable for use in a ROM or PROM use BIN=ROMSIZE as
an option in the .FILES directive, where ROMSIZE is a number or expression equal to the
binary image size required. ROM is a synonym for BIN and may used instead.
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Chapter 6

Error and Warning Messages

The following error messages are supported by cbA65:

• Syntax error.

• Symbol not found.

• Divide by zero.

• Bad expression.

• Unmatched parentheses.

• Duplicate label.

• Bad operation.

• Symbol table full.

• Wrong size for type.

• Branch out of range.

• Invalid quantity.

• Invalid opcode or expression.

• Unknown directive.

• String too long.

In addition to the error messages, the following warning messages are supported:
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• No .END directive.

• Label truncated.

• Indirect operand crosses page.

Although the error messages are more-or-less self explanatory, the warning messages deserve
a few comments.

The absence of an .END directive is not fatal, since a reasonable default action is to simply
take the end of the source file as the end of the program. The .END directive is not rendered
useless, however, because it provides a terminator which may be followed by proprietary
programmer information which is included in the source code but will not be included in
the listing.

Labels are truncated after 12 characters, but may still assemble correctly as long as the first
12 characters of every label are unique.

cbA65 warns the user if the following condition occurs when using indirect addressing:

000029 0200 6C FF 05 jmp (badaddr)
.
.
.

000067 05FF 33 02 badaddr .word stop

In this situation, since the target address straddles a page boundary, the actual address used
by the jump will not be taken from locations $5FF and $600, but from $5FF and $500.
While this anomalous condition is almost certainly not intended by the programmer, it is
a known behavior of the 65xx processor family and could conceivable be used deliberately.
Therefore, cbA65 detects the condition and issues a warning, rather than an error.

A similar situation exists with the indexed indirect addressing mode when the zero page base
address is the last byte in page zero. The assembler also issues a warning in this case. Note
that the indirect indexed also harbors this problem, but it cannot be detected at assemble
time because the target address depends on an index which is determined at run time.

Keep in mind that the zero page indexed operations wrap around to remain in page zero
whenever the base address plus the index exceeds 255. This condition can only be detected
at run time, so no warnings are issued by the assembler.
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Part II

The 65xx CPU
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Chapter 7

65xx Processor Family

7.1 Processor Model

USAGE ADDRESS

IRQ VECTOR FFFE/FFFF

RES VECTOR FFFC/FFFD

NMI VECTOR FFFA/FFFB

ROM
I/O

RAM

0200/****

STACK PAGE 0100/01FF

ZERO PAGE 0000/00FF

Table 7.1: Basic Memory Map for 6502 Systems

The memory map1 for various members of the 65xx processor family differ in the number of
available address lines, the specific clocking hardware and the presence or absence of certain

1The map shown in 7.1 is drawn with addresses increasing from bottom to top. For code snippets or
fragments addressing will increase from top to bottom because code is normally written and listings are
printed this way.
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interrupt lines. Instruction sets are identical across the family, but the physical addresses
for memory locations may be system dependent.

A programmer may not need to have any special knowledge of the internal architecture of
a microprocessor, but must have a detailed knowledge of its registers and their operation.
The following diagram shows the simplest representation of the register set of the 65xx
processors.
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Figure 7.1: 65XX Register Programming Model

This model identifies the following registers:

ACCUMULATOR – This is the primary register used for data movement and manip-
ulation,

INDEX REGISTER – Two index registers, with slightly different capabilities, provide
offsets from the current base address,

PROGRAM COUNTER – Holds current memory address,

STACK POINTER – Current index in processor stack,

STATUS REGISTER – Flags and status bits.
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MEMORY

Figure 7.2: Simplified 65XX Internal Block Diagram

Note that all registers except the program counter are 8 bit registers. The program counter
uses 16 (or fewer) bits.2

A more elaborate model of the 65xx processor follows. This model clarifies the internal
arrangement of the registers in a hardware oriented diagram.

The abbreviated labels are defined as follows:

ALU – Arithmetic/logic unit,

PCL,PCH – Program counter (low 8 bits, high 8 bits),

ADL,ADH – Internal address buss (low 8 bits, high 8 bits),

ABL,ABH – External address buss (low 8 bits, high 8 bits).

2The stack pointer can be modelled as an extended 8 bit register with a 9th bit fixed at 1.
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7.2 Instruction Set

There are many ways to organize the 65xx instruction set for study. In this section, the
instruction mnemonics are organized by general operational function. The complete in-
struction set organized by opcode can be found in the chart in Appendix A.

7.2.1 Data Move (Load/Store/Transfer)

These instructions are used to move 8-bit bytes of data from one place to another. Moves
may be from register to memory, from memory to register, or from register to register.
There are no instructions which support memory to memory transfers.

LDA – Load accumulator from memory.

LDX – Load X from memory.

LDY – Load Y from memory.

PHA – Push accumulator onto stack.

PHP – Push processor flags onto stack.

PLA – Pull accumulator from stack.

PLP – Pull flags from stack.

STA – Store a in memory.

STX – Store X in memory.

STY – Story Y in memory.

TAX – Transfer accumulator to X.

TAY – Transfer accumulator to Y.

TSX – Transfer stack pointer to X.

TXA – Transfer X to accumulator.

TXS – Transfer X to stack pointer.

TYA – Transfer Y to accumulator.
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7.2.2 Data Modify

These instructions modify data.

Add/Sub

ADC – Add memory to accumulator.

SBC – Subtract memory from accumulator.

See the section on Tips and Tricks 7.4 for an efficient method for subtracting the accumulator
from memory.

Logic

The following logic operations are supported.

AND – Bitwise AND of memory to accumulator.

EOR – Bitwise XOR of memory to accumulator.

ORA – Bitwise OR of memory to accumulator.

Increment/Decrement (Read/Modify/Write

These instructions operate on memory or on the X or Y registers. When operating on
memory, the are classed as read, modify, write instructions.

DEC – Decrement memory.

DEX – Decrement X register.

DEY – Decrement Y register.

INC – Increment memory.

INX – Increment X register.

INY – Increment Y register.
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The increment and decrement instructions operate on 8-bit bytes and will wrap around if
the result is greater than 255 or smaller than 0. No flags are affected except the Z flag which
will be set if the result is zero.

Shift and Rotate (Read,Modify,Write)

Single bit shifts and rotates in either direction are supported by the 65xx processors. These
operations can be performed on the accumulator or on a memory location. When performed
on memory, the are classed as read, modify, write instructions.

The mnemonics associated with the shift and rotate opcodes are:

ASL — Arithmetic Shift Left

LSR — Logical Shift Right

ROL — Rotate Left

ROR — Rotate Right

A word about the terminology is in order. In computer literature a logical shift is one which
replaces the vacated bit with a zero. This operation is widely used as a substitute for the
multiplication or division of an integer by 2. For unsigned numbers this technique yields
satisfactory results.

A problem occurs, however, when a logical shift right is applied to a signed quantity. Specif-
ically, if a negative number is shifted right and the most significant bit is replaced by a zero,
the sign is changed. An arithmetic shift right would be expected to preserve the sign of the
number. The 65xx family opcodes do not support this operation.3 Note that the arithmetic
shift left is the same as a logical shift left.

The distinction between a shift and a rotate is simply that a shift replaces a vacated bit
position with a zero, and a rotate replaces it with the value of the carry flag. The following
diagrams should clarify the operations.

To rotate the accumulator without circulating through the carry, see the section on Tips
and Tricks 7.4.

3An arithmetic shift right of the accumulator can be simulated with the following code sequence: CMP

#$80, ROR.
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ASL

LSR

ROL

ROR

C
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C
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MSB LSB

0

0

Figure 7.4: Shifting and Rotating

7.2.3 Data Test

This section details the behavior of instructions which are intended to set processor flags
based on the contents of registers or memory locations.

Compare Instructions

The 65xx processors support only unsigned comparisons. That is, when two bytes are
compared the states of the affected flags are those associated with comparing two 8-bit
integers in the range from 0 to 255.4

The compare instructions are:

CMP – Compare memory with accumulator.

CPX – Compare memory with X.

CPY – Compare memory with Y.

The processor flags support program flow control by using one of the branch instructions
following an operation which affects them. Of the eight branch instructions, six use flags
affected by a compare.5

In order to correctly interpret the results of a comparison, the programmer must refer to
the Z and C flags. On occasion the N flag is also of interest. Since comparisons are normally
done in decision loops, it is important to understand how the resulting flag states can be
used to control program flow.

4Although the numbers are unsigned for the purpose of manipulating the Z and C flags, the state of the
N flag will also be affected.

5BCC,BCS,BEQ,BNE, BMI and BPL
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Table 7.2 shows how the compare (CMP) instruction, which compares the value in the accu-
mulator (A) register with a value in memory (M), affects the appropriate flags. The N flag

Comparison Carry Zero Negative
Result Flag Flag Flag
A > M Set Clear ?
A = M Set Set Clear
A < M Clear Clear ?

Table 7.2: Status Flags for Simple Compares

is of limited use in making decisions using the compare instructions. However, there is a
unique combination of Z and C flags which distinguish each possible result. The Z flag alone
unambiguously distinguishes the cases where the value in the accumulator is equal to the
value in memory or unequal to it. The C flag alone unambiguously distinguishes the cases
where the value in the accumulator is less than the value in memory from those where it is
not.

To interpret other relations will require testing combinations of the two flags. A complete
list of possible flag states following a compare is shown in the Table 7.3.

Comparison Carry Zero Negative
Result Flag Flag Flag
A > M Set Clear ?
A ≥ M Set ? ?
A = M Set Set Clear
A 6= M ? Clear ?
A ≤ M ? ? ?
A < M Clear Clear ?

Table 7.3: Complete Table of Comparison Status Flags

In some cases, the relation tests involve two separate operations. The order of testing may
be significant. See Appendix E for code examples.

Bit Instructions

There are two versions of the BIT instruction. One for page zero addressing and one for
absolute addressing. The BIT instruction copies bits 6 and 7 of the target location into the
processor V and N flags, respectively. The processor Z flag will hold the result of ANDing
the target location contents with the accumulator.
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This peculiar instruction is primarily used to test dynamic bits from hardware ports. It is
often used in polling applications.

BIT – Set processor bits according to memory and accumulator.

7.2.4 Branch Instructions

The 65xx processors support eight instructions for controlling program flow. These instruc-
tions test the processor flags which were affected by previous operations and fall through
to the next instruction or branch to a programmed target address, depending on the result.
The branch instructions are:

BCC – Branch on carry clear (C = 0).

BCS – Branch on carry set (C = 1).

BEQ – Branch if equal (Z = 1).

BNE – Branch if not equal (Z = 0).

BMI – Branch if minus (N = 1).

BPL – Branch if plus (N = 0).

BVC – Branch if no overflow (V = 0).

BVS – Branch if overflow (V = 1).

7.2.5 Flag Control

Some of the processor flags can be set or cleared directly. These are:

CLC – Clear carry (C = 0).

CLD – Clear decimal mode (D = 0).

CLI – Clear IRQ disable (I = 0).

CLV – Clear overflow (V = 0).

SEC – Set carry (C = 1).
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SED – Set decimal mode (D = 1).

SEI – Set IRQ disable (I = 1).

Note that there is no instruction to set the IRQ disable flag. Also be aware that the V flag
can be set externally.

7.2.6 Unconditional Jumps

The following instructions are associated with unconditional program jumps, returns, etc.

JMP – Jump direct or indirect to a new location.

JSR – Jump to subroutine.

RTI – Return from interrupt.

RTS – Return from subroutine.

NOP – No operation (included here for completeness).

7.3 Addressing Modes

The 65xx processor architecture supports a number of remarkable addressing modes. Some
of these involve complicated indirection which is best explained by operational models. See
Appendix A for a summary of the complete instruction set.

Implied (No Address Mode)

Some instructions do not require any addressing mode specification. For example, BRK, CLC,
DEX, PHA and TAY. These instructions are used for special operations, flag manipulation or
register transfers. The involved registers, if any, are intrinsic in the opcode.

Accumulator

Accumulator addressing mode applies to instructions which have multiple addressing modes
including one which refers to the accumulator. For example, ROR is supported for memory
operands or the accumulator. This addressing mode may be specified by using the letter A
as an operand, or simply omitting the operand. cbA65 omits the operand so that A may
be used as a symbol or label.
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Immediate

Immediate addressing mode is specified by prepending a leading pound sign #to the operand.
The operand is an 8-bit byte whose numeric value is to be used directly. Contrast this with
zero page addressing where the operand is an address whose contents are to be used.

Depending on the assembler, an immediate operand may be a decimal or hexadecimal
value, an ASCII character, or the value of a symbol.

lda #$ff ; load accumulator with 255

Negative numbers are also supported as immediate operands. The assembler recognizes
contexts which require 8-bit or 16-bit operands and will perform correctly.

Absolute

Absolute addressing is supported by all instructions which must access memory locations
throughout the entire address space (65536 locations). An absolute address is usually
specified by its decimal value or by a 4-character hex number. For example, $8000 =
32768.

Many of the 65xx opcodes specify operations on locations identified by absolute addresses.

eor $8000 ; xor accumulator with contents of 32768

Zero Page

Zero page addressing is supported by some instructions where a shortened address length
provides an improvement in performance. With this addressing mode the operand (address)
consists of a single byte. All instructions which support zero page addressing also support
absolute addressing.

lda ptr1 ; move pointer 1 in z.p. to pointer 2
sta ptr2
lda ptr1+1
sta ptr2+1

If an instruction operand is an 8-bit value and the instruction supports zero page addressing,
most assemblers will code the zero page instruction automatically. cbA65 also defaults to
zero page addressing in this case, but allows the programmer to override the default and
force absolute addressing. See Section 3.5.
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Absolute Indexed

Many instructions support indexing by the X or Y registers. Indexing refers to the addition
of the value in the index register to the address specified by the operand. For absolute
indexed mode, the operand is an absolute (16-bit) address and the index register is part of
the operand. An example of indexing using the Y register is

lda msgtbl,y

where msgtbl is an absolute address and y specifies that the Y register is to be added to
the address. Y would most likely be an offset to a particular message in the table.

There are only two index registers, but some instructions support only one of them.

Zero Page Indexed

This addressing mode is analogous to zero page addressing in that a short (1-byte) base
address is supported. The indexing works the same as for absolute indexing, except that
the resulting address wraps around to remain in page zero.

Indirect Indexed

An example of the addressing mode called indirect indexed is shown in Figure 7.5. This
example illustrates the case where PTR is a symbolic quantity representing the zero page
address: $C2. At the time the instruction LDA (PTR),Y is executed, the Y register contains
$35. After completion of the instruction, the A register contains $7C.

Instruction: LDA (PTR),Y

PTR =
00C1
00C2
00C3
00C4

8 0
1 2

}
1280
1281

12B4
12B5
12B6

A REG7 C
Y = $35

Zero Page Memory

Figure 7.5: Indirect Indexed Addressing Mode

A quirk in this instruction occurs if the low byte of the zero page address (PTR) is located
at $FF. In this case the expected address high byte will be at location $00 instead of the
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expected $100. The assembler can detect this condition and will report a warning.6

Indexed Indirect

Indexed indirect addressing is illustrated in Figure 7.6. Although this mode and the previous
mode are sufficiently complex to cause some confusion, an examination of the figures with
due attention to the terminology should make the distinction clear.

Instruction: LDA (PTR,X)

PTR
0091
0092
0093

00A5
00A6
00A7
00A8

B 5
1 2

}
X=$14

12B4
12B5
12B6

A REGC B

Zero Page Memory

Figure 7.6: Indexed Indirect Addressing Mode

This addressing mode is also subject to page-wrapping quirks, but they cannot be detected
at assemble time.

7.4 Tips and Tricks

It is sometimes necessary to perform an operation which is not directly supported by a
particular processors instruction set. The current trend toward CISC (Complex Instruction
Set Computers) has improved the number of built-in CPU features massively. But for the
lowly 65xx processors, the programmer is burdened with implementing them in software.

For example, multiply, divide, square root, and a variety of floating point functions are
available on modern processors. These must be done in software for the 65xx.

At a much lower level, there are several operations which are not available on the 65xx but
which are easily implemented with a few instructions. These are the focus of this section.

6Although this condition is most likely an error, it is legal and will not abort the assembly.
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7.4.1 Shift Arithmetic Right

This instruction is not available in the 65xx instructions set, but can be implemented with
the following code.

CMP #$80 ; get sign bit into carry
ROR ; preserve sign during right shift

This sequence will effectively divide a signed quantity by 2.

7.4.2 8-Bit Rotates

The 65xx processors implement rotate-through-carry operations. These rotate the accumu-
lator, but insert the carry bit in the rotation path. This is, effectively, a 9-bit rotate. See
Section 7.2.2. For rotating multi-byte quantities, this is the ideal rotation strategy.

However, it is sometimes necessary to simply rotate the accumulator without intervening
bits. These 8-bit rotates can be done as shown.

ROTATE RIGHT ROTATE LEFT

pha pha
ror rol
pla pla
ror rol

7.4.3 Where Am I?

A useful trick to aid in tracing problems in complex code uses a special memory location
to hold an execution address. This location can be examined after an unscheduled halt,
break or crash to determine a recent execution point. To use the method, it is only neces-
sary to sprinkle copies of code similar to the following with suitable labels throughout the
executable.

.

.
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.
jsr nxtloc ; just push current address...

nxtloc pla
sta traceaddr ; ...and retrieve it for reference.
pla
sta traceaddr+1
.
.
.

7.4.4 Using a Return for a Jump

It is sometimes desirable to have a JMP instruction with a programmable target address.
This example of self-modifying code is not possible if the only locations available are in
ROM and cannot be changed at run time.

One way around this is to push the target address on the processor stack and execute an RTS
instruction.7 The processor adds 1 to the address popped from the stack, so it is necessary
to subtract 1 from the address pushed.

lda #>(prtstr-1) ; jump to ’prtstr’ routine
pha
lda #<(prtstr-1)
pha
rts

Recall that the immediate mode symbol # is not really required since the < and > symbols
imply immediate mode.

7.4.5 Subtracting From Memory

All math operations in the 65xx are performed on the accumulator. Subtracting the contents
of a memory location from the accumulator is directly supported. The reverse operation,
subtracting the accumulator from a memory location, is not directly supported. Manipu-
lating the data so the subtraction occurs in the accumulator is awkward, to say the least.
However, if the quantity in the accumulator is converted to a negative value, the contents
of memory may be added to it and the result saved back with improved efficiency. Since

7Some programmers, with tongue in cheek, have referred to this operation as a ‘come from’ instruction.
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the conversion to negative requires the two’s complement of the accumulator, the following
code will work.

eor #$ff ; form 1’s complement of accumulator
sec ; add carry for 2’s complement
adc memloc ; get result
sta memloc ; and save it.
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Part III

Advanced Techniques
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Chapter 8

Using Tables

It is well-known that precomputed tables can boost the performance of many algorithms.
This chapter discloses a few table-driven methods for performing useful computations and
conversions, with caveats.

8.1 Number Conversion

The 65xx family of processors support both binary and BCD math operations.

Here is a module which converts a BCD number < 65536 to 16-bit binary. Although the
method is reasonabley efficient and requires very little code, the penalty to be paid is the
requirement for a 208 byte table.

;
; bcd2bin.cba -- convert BCD number (n < 65536) to binary.
; BCD number in ($82,$83,$84) -> binary number in ($80,$81)
; lo,....,hi lo, hi
;
; C. Bond, 2008

.title BCD to Binary Conversion Program

.files h65
* = $80

bin * = *+2
bcd * = *+3

.org $200

69



tstit lda #$35 ; test entry point
ldy #$55
ldx #$06

;
; bin2bcd
;
; convert a BCD number in $82,$83,$84 to binary in $80,$81
;
bcd2bin sta bcd ; a:lo byte, y:mid byte, x:hi byte

sty bcd+1
stx bcd+2
ldy #$f

;
; 1) shift bcd down through bin
; 2) update bcd values
; 3) decrement counter
; 4) loop to 1) until done
;

mloop lsr bcd+2 ; shift number field down
ror bcd+1
ror bcd
ror bin+1
ror bin

;
; update bcd register
;

ldx bcd
lda cnvtbl2,x
sta bcd
ldx bcd+1
lda cnvtbl2,x
sta bcd+1
ldx bcd+2
lda cnvtbl2,x
sta bcd+3
dey
bpl mloop
brk

.org $400
cnvtbl2 .byte $00,$01,$02,$03,$04,$05,$06,$07,$05,$06,$07,$08,$09,0,0,0
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.byte $10,$11,$12,$13,$14,$15,$16,$17,$15,$16,$17,$18,$19,0,0,0

.byte $20,$21,$22,$23,$24,$25,$26,$27,$25,$26,$27,$28,$29,0,0,0

.byte $30,$31,$32,$33,$34,$35,$36,$37,$35,$36,$37,$38,$39,0,0,0

.byte $40,$41,$42,$43,$44,$45,$46,$47,$45,$46,$47,$48,$49,0,0,0

.byte $50,$51,$52,$53,$54,$55,$56,$57,$55,$56,$57,$58,$59,0,0,0

.byte $60,$61,$62,$63,$64,$65,$66,$67,$65,$66,$67,$68,$69,0,0,0

.byte $70,$71,$72,$73,$74,$75,$76,$77,$75,$76,$77,$78,$79,0,0,0

.byte $50,$51,$52,$53,$54,$55,$56,$57,$55,$56,$57,$58,$59,0,0,0

.byte $60,$61,$62,$63,$64,$65,$66,$67,$65,$66,$67,$68,$69,0,0,0

.byte $70,$71,$72,$73,$74,$75,$76,$77,$75,$76,$77,$78,$79,0,0,0

.byte $80,$81,$82,$83,$84,$85,$86,$87,$85,$86,$87,$88,$89,0,0,0

.byte $90,$91,$92,$93,$94,$95,$96,$97,$95,$96,$97,$98,$99,0,0,0

.end

The counterpart program, which converts from 16-bit binary to BCD is shown below.

;
; bin2bcd.cba -- convert 16-bit binary number to BCD
; binary number in ($80,$81) -> BCD number in ($82,$83,$84)
; lo, hi lo,....,hi
;
; C. Bond, 2008

.title Binary to BCD Conversion Program

.files h65
* = $80

bin * = *+2
bcd * = *+3

.org $200
tstit lda #$ff ; test entry point (convert $FFFF to 65535)

ldy #$ff
;
; bin2bcd
;
; convert 16-bit binary number in a,y to BCD in $82,$83,$84
;
bin2bcd sta bin ; a:lo byte, y:hi byte

sty bin+1
lda #0
sta bcd
sta bcd+1
sta bcd+2
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ldy #$f
;
; 1) prep bcd number for shift
; 2) shift bin through bcd
; 3) decrement loop counter (y)
; 4) loop to 1) until done
;

mloop ldx bcd ; prepare bcd values for shift
lda cnvtbl,x
sta bcd
ldx bcd+1
lda cnvtbl,x
sta bcd+1
ldx bcd+2
lda cnvtbl,x
sta bcd+2

;
; shift number field up
;

asl bin
rol bin+1
rol bcd
rol bcd+1
rol bcd+2
dey
bpl mloop
brk

.org $400
cnvtbl .byte $00,$01,$02,$03,$04,$08,$09,$0A,$0B,$0C,0,0,0,0,0,0

.byte $10,$11,$12,$13,$14,$18,$19,$1A,$1B,$1C,0,0,0,0,0,0

.byte $20,$21,$22,$23,$24,$28,$29,$2A,$2B,$2C,0,0,0,0,0,0

.byte $30,$31,$32,$33,$34,$38,$39,$3A,$3B,$3C,0,0,0,0,0,0

.byte $40,$41,$42,$43,$44,$48,$49,$4A,$4B,$4C,0,0,0,0,0,0

.byte $80,$81,$82,$83,$84,$88,$89,$8A,$8B,$8C,0,0,0,0,0,0

.byte $90,$91,$92,$93,$94,$98,$99,$9A,$9B,$9C,0,0,0,0,0,0

.byte $A0,$A1,$A2,$A3,$A4,$A8,$A9,$AA,$AB,$AC,0,0,0,0,0,0

.byte $B0,$B1,$B2,$B3,$B4,$B8,$B9,$BA,$BB,$BC,0,0,0,0,0,0

.byte $C0,$C1,$C2,$C3,$C4,$C8,$C9,$CA,$CB,$CC,0,0,0,0,0,0

.end
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The table for this conversion only requires 160 bytes — but in this case, any table at all
is too much! The reason is that the 6502 is capable of directly performing the conversion
efficiently, as shown below.

;
; bin2bcd.cba -- convert 16-bit binary number to BCD
;
; C. Bond, 2008

.title Binary to BCD Conversion Program

.files h65
* = $80

bin * = *+2
bcd * = *+3

.org $200
tstit lda #$ff ; test entry point

ldy #$ff
;
; bin2bcd
;
; convert 16-bit binary number in a,y to bcd in $82,$83,$84
;
bin2bcd sta bin ; entry for user provided binary number

sty bin+1 ; a:lo, y:hi
lda #0
sta bcd
sta bcd+1
sta bcd+2
sed
ldx #$f

mloop asl bin
rol bin+1
lda bcd
adc bcd
sta bcd
lda bcd+1
adc bcd+1
sta bcd+1
lda bcd+2
adc bcd+1
sta bcd+2
dex
bpl mloop
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cld
brk
.end

I don’t know of any similar algorithm for accomplishing a BCD to binary conversion.

The lesson to be learned here is twofold. First, no algorithm is necessarily best for all
applications and, second, there is no substitute for creativity and out-of-the-box thinking.

8.2 Nibble Shifting

When processing packed BCD numbers it is often necessary to shift a multi-byte register
by one nibble (1 BCD digit). This challenge offers fertile ground for trading code size for
speed.

Here is sample code for shifting an 8-byte BCD register left one digit.

;
; bcd_shfta.cba -- routine to shift a packed multi-byte BCD register
; left by 1 digit (4-bits)
;

.org $200
shfl ldy #3 ; shift 8-byte ’reg’ left one nibble
lloop ldx #6

asl reg+1,x
@ rol reg,x

dex
bpl @B
dey
bpl lloop
brk
.org $300

reg .byte $00,$00,$12,$34,$56,$78,$98,$76
.end

This code is compact and straightforward. However, it is slow. It requires about 388
processor cycles to complete the shift.

Here is a simple alternative routine which takes more code, but accomplishes the shift in
about 345 cycles.
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;
; bcd_shftb.cba -- alternative routine to shift a packed multi-byte
; BCD register left by 1 digit (4-bits)
;
temp .equ $80

.org $200
shfl lda #0

sta temp
ldx #7

@ lda reg,x
pha
asl
asl
asl
asl
ora temp
sta reg,x
pla
lsr
lsr
lsr
lsr
sta temp
dex
bpl @B
brk
.org $300

reg .byte $00,$00,$12,$34,$56,$78,$98,$76
.end

The following version accomplishes the same thing as the previous two routines but, at the
cost of two tables, reduces the computation overhead to 157 CPU cycles — over twice as
fast.

;
; bcd_shftc.cba -- table-driven routine to shift a multi-byte BCD register
; left by one digit.
;

.org $200
shfl ldx #7 ; shift ’reg’ left one digit.

lda #0
@ ldy reg,x
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ora tlh,y
sta reg,x
lda thl,y
dex
bpl @B
brk

.org $300
reg .byte $00,$00,$12,$34,$56,$78,$98,$76

.org $400
;
; This table, and the one following, support high speed
; shifting of multibyte packed BCD registers.
;
tlh .byte 0,$10,$20,$30,$40,$50,$60,$70,$80,$90,0,0,0,0,0,0

.byte 0,$10,$20,$30,$40,$50,$60,$70,$80,$90,0,0,0,0,0,0

.byte 0,$10,$20,$30,$40,$50,$60,$70,$80,$90,0,0,0,0,0,0

.byte 0,$10,$20,$30,$40,$50,$60,$70,$80,$90,0,0,0,0,0,0

.byte 0,$10,$20,$30,$40,$50,$60,$70,$80,$90,0,0,0,0,0,0

.byte 0,$10,$20,$30,$40,$50,$60,$70,$80,$90,0,0,0,0,0,0

.byte 0,$10,$20,$30,$40,$50,$60,$70,$80,$90,0,0,0,0,0,0

.byte 0,$10,$20,$30,$40,$50,$60,$70,$80,$90,0,0,0,0,0,0

.byte 0,$10,$20,$30,$40,$50,$60,$70,$80,$90,0,0,0,0,0,0

.byte 0,$10,$20,$30,$40,$50,$60,$70,$80,$90,0,0,0,0,0,0
;
; ’thl’ maps the upper digit of its BCD index into the
; low digit.
;
; Example:
;
; ldy #$35
; lda thl,y
;
; Now the ’a’ register contains #$03; i.e. the ’3’ in ’35’
; is shifted to the low digit position and the high digit
; position is cleared.
;
thl .byte 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

.byte 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1

.byte 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2

.byte 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3

.byte 4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4
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.byte 5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5

.byte 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6

.byte 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7

.byte 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8

.byte 9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9
.end
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Chapter 9

Hashing 65xx Mnemonics

One of the early tasks in writing programming tools for 65xx processors is that of efficiently
identifying opcode mnemonics. It is desirable to be able to scan a token consisting of ASCII
characters and determine quickly whether this token is a valid 65xx opcode. The direct and
näıve approach is to attempt to match the characters in the token to an entry in a list of
opcodes. In the worst case, when the token is not in the list, this can waste many machine
cycles.

A more sophisticated approach uses a hash table. The optimal strategy is easily stated:

1. Manipulate the token to produce a numeric value,

2. Retrieve a pointer from the table using the numeric value as an index,

3. Compare the entry pointed to in the opcode list with the given token.

The result of the compare will be match or no match.

Optimal hashing is rarely possible. In some cases the resulting hash tables are too large to
be practical. Sometimes the hashing algorithm, which generates an index from the token,
produces duplicate numbers for different tokens. All these problems can be managed with
simple support strategies, but in our case an optimal solution is possible.1

The following test code exercises a ‘perfect’ hash algorithm for screening 65xx opcodes.
There are 56 unique opcodes (not counting address mode modifiers), and each one is present
in a prepared list.

1See the computer science literature for a wealth of information on hashing strategies.
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The candidate string submitted to the routine for testing will produce a return value of 1
if it is a valid opcode and 0 otherwise. The ideal hashing is accomplished by generating a
value in the range from 0 to 255 for each 3-character string submitted. If the strings are
valid 65xx opcodes, there will be a unique value for each one. This value is used as an index
into a table which contains the index of each opcode in the list.

For example, the string ADC will yield the hash code value, $F4. At position $F4 (244) in
the table is the value 1. The opcode list, mne[ ], contains ADC at position 1. Hence, a simple
compare of the original string with the string at mne[1] confirms the opcode.

Note that the final step is a string compare, but that only one string compare is required
to confirm that the input string is a valid opcode. Other strategies require searching the
list, which is fairly short, but long enough to benefit from hashing. Imperfect hashing may
require several string compares before a decision is reached.

A further optimization is possible. The 65xx mnemonics are all 3 character strings. If these
strings are null terminated, as would be the case in a 32-bit C language environment, we can
process 4 characters at a time in a 32-bit integer. Then no string comparisons are required
at all, just a single integer compare.

The critical elements of this method implemented in C are:

1. A table or list of valid mnemonics for all opcodes. This is a 57 element list which
contains a dummy string at position 0.

char* mne[57] = {
"XXX",
"ADC",
"AND",
...
...
"TXS",
"TYA"};

2. A hash index table with 256 entries. All non-opcode hash values are 0. The hash
values which result from valid opcode hashing contain the index of the opcode in the
mnemonic table above.

3. The hash algorithm. This algorithm was produced by a computer search of several
hashing strategies. It only requires 2 shifts and 2 XOR operations per invocation to
generate the hash value. A unique value is produced for each opcode.
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/* This table is a list of all standard 65xx opcode mnemonics. A
* dummy entry at location 0 allows the list to index from 1.
*/
char *mne[] = {

"XXX", "ADC", "AND", "ASL", "BCC", "BCS", "BEQ", "BNE",
"BMI", "BPL", "BVC", "BVS", "BIT", "BRK", "CLC", "CLD",
"CLI", "CLV", "CMP", "CPX", "CPY", "DEC", "DEX", "DEY",
"EOR", "INC", "INX", "INY", "JMP", "JSR", "LDA", "LDX",
"LDY", "LSR", "NOP", "ORA", "PHA", "PHP", "PLP", "PLA",
"ROL", "ROR", "RTI", "RTS", "SBC", "SEC", "SED", "SEI",
"STA", "STX", "STY", "TAX", "TAY", "TSX", "TXA", "TXS",
"TYA"
};

/* This table contains index values into the mnemonic table. The
* 256 entries correspond to possible values generated by the
* hash algorithm: hash_op(). For each valid opcode, the hash
* algorithm produces a number which identifies a location in
* in this array. The location contains an index into the
* opcode mnemonic table mne[].
*/
int hshtbl[256] = {
0, 0, 0, 0, 23, 0, 0, 22, 0, 0, 0, 0, 32, 0, 0, 31,
0, 0, 21, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
45, 46, 0, 0, 0, 0, 47, 0, 0, 0, 0, 0, 0, 0, 0, 37,
0, 26, 27, 0, 0, 0, 0, 0, 14, 15, 0, 0, 0, 0, 16, 0,
0, 0, 0, 28, 25, 0, 48, 0, 0, 0, 0, 17, 0, 18, 0, 38,
0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0, 24, 56, 0, 0, 0,
0, 41, 0, 0, 54, 3, 11, 40, 0, 0, 0, 34, 0, 19, 20, 0,
0, 29, 0, 0, 0, 0, 43, 0, 0, 0, 0, 0, 0, 0, 13, 0,
42, 0, 0, 0, 0, 0, 0, 0, 0, 0, 55, 0, 0, 33, 35, 9,
0, 0, 0, 0, 7, 2, 0, 0, 8, 0, 0, 0, 39, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 53, 0, 0, 0, 0, 0, 49, 50, 0,
0, 0, 0, 0, 52, 0, 0, 51, 0, 0, 0, 0, 36, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 44, 0, 0, 0, 0, 0, 0, 12,
6, 0, 0, 0, 30, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0,
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0};

Here is the hash algorithm. It returns an index into the above table.
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/* The following hash algorithm is a ’perfect’ hasher for
* the official 65xx opcode mnemonics. It produces a
* unique number in the range 1 - 255 for each of the valid
* mnemonics. The returned number is either 0 or an index
* into hshtbl[]. Since it is possible for other character
* combinations to produce the same index, a test for string
* match must follow the generation of the hash index.
*/
int hash_op(char *p)
{

int hsh;

hsh = (((*p++)-67) << 1);
hsh ^= (((*p++)-67) << 3);
hsh ^= ((*p)-67);
hsh &= 0xff;
return hshtbl[hsh];

}

Here is a simple calling routine. Invoke the call with a null-terminated three character
ASCII string as an argument. Returns 1 (true) if the argument is a valid mnemonic and 0
(false) otherwise.

/* Test for string match to 3-letter opcode.
* Accepts NULL terminated, 3-character string.
*/
int isopcode(char *p)
{

int idx,s;

s = *(int *)p;
s &= ~0x00202020; /* assure string is upper case */
idx = hash_op((char*)&s);
if (!idx) return 0; /* failed hash test */

/* the following replaces a string compare (4 characters, including NULL) */
if (*(int *)mne[idx] == s) {

return 1; /* pass! valid official mnemonic */
}
return 0; /* failed mnemonic compare test */

}
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Appendix A

65xx Opcode Chart

LSD (HEX) −→
0 1 2 3 4 5 6 7 8 9 A B C D E F

BRK ORA ORA ASL PHP ORA ASL ORA ASL0
(n,X) n n #n nn nn

BPL ORA ORA ASL CLC ORA ORA ASL1
n (n),Y n,X n,X nn,Y nn,X nn,X

JSR AND BIT AND ROL PLP AND ROL BIT AND ROL2 nn (n,X) n n n #n nn nn nn

BMI AND AND ROL SEC AND AND ROL3
n (n),Y n,X n,X nn,Y nn,X nn,X

RTI EOR EOR LSR PHA EOR LSR JMP EOR LSR4
(n,X) n n #n nn nn nn

BVC EOR EOR LSR CLI EOR EOR LSR5
n (n),Y n,X n,X nn,Y nn,X nn,X

RTS ADC ADC ROR PLA ADC ROR JMP ADC ROR6 (n,X) n n #n (nn) nn nn

BVS ADC ADC ROR SEI ADC ADC ROR7
n (n),Y n,X n,X nn,Y nn,X nn,X

STA STY STA STX DEY TXA STY STA STX8
(n,X) n n n nn nn nn

BCC STA STY STA STX TYA STA TXS STA9
n (n),Y n,X n,X n,Y nn,Y nn,X

LDY LDA LDX LDY LDA LDX TAY LDA TAX LDY LDA LDXA
#n (n,X) #n n n n #n nn nn nn

BCS LDA LDY LDA LDX CLV LDA TSX LDY LDA LDXB
n (n),Y n,X n,X n,Y nn,Y nn,X nn,X nn,Y

CPY CMP CPY CMP DEC INY CMP DEX CPY CMP DECC
#n (n,X) n n n #n nn nn nn

BNE CMP CMP DEC CLD CMP CMP DECD
n (n),Y n,X n,X nn,Y nn,X nn,X

CPX SBC CPX SBC INC INX SBC NOP CPX SBC INCE
#n (n),X n n n #n nn nn nn

BEQ SBC SBC INC SED SBC SBC INCF
n (n),Y n,X n,X nn,Y nn,X nn,X
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Appendix B

65xx Processor Pinout Diagrams

6502

1 40

2 39

3 38

4 37

5 36

6 35

7 34

8 33

9 32

10 31

11 30

12 29

13 28

14 27

15 26

16 25

17 24

18 23

19 22

20 21

Vss RES

RDY φ2(OUT)

φ1(OUT) S.O.

IRQ φ0(IN)

NC NC

NMI NC

SYNC R/W

Vdd DB0

AB0 DB1

AB1 DB2

AB2 DB3

AB3 DB4

AB4 DB5

AB5 DB6

AB6 DB7

AB7 AB15

AB8 AB14

AB9 AB13

AB10 AB12

AB11 Vss

6503

RES φ2(OUT)

Vss φ0(IN)

IRQ R/W

NMI DB0

Vdd DB1

AB0 DB2

AB1 DB3

AB2 DB4

AB3 DB5

AB4 DB6

AB5 DB7

AB6 AB12

AB7 AB11

AB8 AB10

6505

RES φ2(OUT)

Vss φ0(IN)

RDY R/W

IRQ DB0

Vdd DB1

AB0 DB2

AB1 DB3

AB2 DB4

AB3 DB5

AB4 DB6

AB5 DB7

AB6 AB11

AB7 AB10

AB8 AB9

6507

RES φ2(OUT)

Vss φ0(IN)

RDY R/W

Vdd DB0

AB0 DB1

AB1 DB2

AB2 DB3

AB3 DB4

AB4 DB5

AB5 DB6

AB6 DB7

AB7 AB12

AB8 AB11

AB9 AB10

Figure B.1: Selected 650X Pinout Diagrams
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Appendix C

ASCII Character Set

LSD (HEX) −→

0 1 2 3 4 5 6 7 8 9 A B C D E F
0 NUL SOH STX ETX EOT ENQ ACK BEL BS HT LF VT FF CR SO SI

1 DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US

2 SP ! " # $ % & ’ ( ) * + , - . /

3 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

4 @ A B C D E F G H I J K L M N O

5 P Q R S T U V W X Y Z [ \ ] ^

6 ‘ a b c d e f g h i j k l m n o

7 p q r s t u v w x y z { | } ~ DEL

HEX ASCII DESCRIPTION HEX ASCII DESCRIPTION

00 NUL Null character 10 DLE Device link escape

01 SOH Start of header 11 DC1 Device control 1

02 STX Start of text 12 DC2 Device control 2

03 ETX End of text 13 DC3 Device control 3

04 EOT End of transmission 14 DC4 Device control 4

05 ENQ Enquiry 15 NAK Negative acknowledge

06 ACK Acknowledge 16 SYN Synchronous idle

07 BEL Sound bell 17 ETB End of transmission block

08 BS Backspace 18 CAN Cancel

09 HT Horizontal tab 19 EOM End of medium

0A LF Line feed 1A SUB Substitute

0B VT Vertical tab (or home) 1B ESC Escape

0C FF Form feed 1C FS File separator

0D CR Carriage return 1D GS Group separator

0E SO Shift out 1E RS Record separator

0F SI Shift in 1F US Unit separator
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Appendix D

Hex/Decimal Conversion Chart

LSD (HEX) −→

0 1 2 3 4 5 6 7 8 9 A B C D E F
0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
2 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
3 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
4 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
5 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
6 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
7 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
8 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
9 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
A 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
B 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
C 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
D 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
E 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
F 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
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Appendix E

Branch after Compare

The following code snippets illustrate the use of processor status flags after a compare to control
program flow. These examples are not optimized and are only intended to clarify the decision
concepts.

E.1 Accumulator Greater than Memory

cmp N ; compare A with N
bcc @F ; FAIL if A is less than N
beq @F ; FAIL if A is equal to N
jmp PASS

@ jmp FAIL

E.2 Accumulator Greater than or Equal to Memory

cmp N ; compare A with N
bcc @F ; FAIL if A is less than N
jmp PASS

@ jmp FAIL
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E.3 Accumulator Equal to Memory

cmp N ; compare A with N
bne @F ; FAIL if A is unequal to N
jmp PASS

@ jmp FAIL

E.4 Accumulator Unequal to Memory

cmp N ; compare A with N
beq @F ; FAIL if A is equal to N
jmp PASS

@ jmp FAIL

E.5 Accumulator Less Than or Equal to Memory

cmp N ; compare A with N
beq @F ; PASS if A is equal to N
bcc @F ; PASS if A is less than N
jmp FAIL

@ jmp PASS

E.6 Accumulator Less Than Memory

cmp N ; compare A with N
bcc @F ; PASS if A is less than N
jmp FAIL

@ jmp PASS
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Appendix F

Intel Hex Format

Intel HEX-record Format1

INTRODUCTION

Intel’s Hex-record format allows program or data files to be encoded in a printable (ASCII) format.
This allows viewing of the object file with standard tools and easy file transfer from one computer to
another, or between a host and target. An individual Hex-record is a single line in a file composed
of many Hex-records.

HEX-RECORD CONTENT

Hex-Records are character strings made of several fields which specify the record type, record length,
memory address, data, and checksum. Each byte of binary data is encoded as a 2-character hex-
adecimal number: the first ASCII character representing the high-order 4 bits, and the second the
low-order 4 bits of the byte.

The 6 fields which comprise a Hex-record are defined as follows:

1The information in this section was obtained from Internet sources. It is believed to be reliable, but no
warranty on accuracy or usage is provided.
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Field Format

Number Type Chars Description

1 Start code 1 An ASCII colon, “:”.

2 Byte count 2 Number (n) of character pairs in data field.

3 Address 4 The 2-byte memory address to load the data field.

4 Type 2 00, 01, or 02.

5 Data 0-2n From 0 to n bytes of code or data, (n ≤ 32).

6 Checksum 2 Checksum over fields 2 through 5.

The checksum is the least significant byte of the two’s complement sum of the values represented
by all the pairs of characters in the included fields.

Each record may be terminated with a CR/LF/NULL. Accuracy of transmission is ensured by the
byte count and checksum fields.

HEX-RECORD TYPES

There are three possible types of Hex-records.

00 — A record containing data and the 2-byte address at which the data is to reside.

01 — A termination record for a file of hex-records. Only one termination record is allowed per file
and it must be the last line of the file. There is no data field.

02 — A segment base address record. This type of record is ignored by Lucid programmers.

HEX-RECORD EXAMPLE

Following is a typical Hex-record module consisting of four data records and a termination record.

:10010000214601360121470136007EFE09D2190140
:100110002146017EB7C20001FF5F16002148011988
:10012000194E79234623965778239EDA3F01B2CAA7
:100130003F0156702B5E712B722B732146013421C7
:00000001FF

The fields in the first data record is explained as follows:
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1. : – Start code.

2. 10 – Hex 10 (decimal 16), indicating 16 data character pairs, 16 bytes of binary data in this
record.

3. 0100 – Four-character, 2-byte, address field. Hex address 0100, indicates location where the
following data is to be loaded.

4. 00 – Record type indicating a data record.

5. The next 16 character pairs are the ASCII bytes of the actual program data.

6. 40 – Checksum of the first Hex-record.

The termination record is explained as follows:

1. : – Start code.

2. 00 – Byte count is zero, no data in termination record.

3. 0000 – Four-character 2-byte address field, zeros (HI/LO).

4. 01 – Record type 01 is termination.

5. No data field present.

6. FF – Checksum of termination record.
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Appendix G

MOS Technology Hex Format

The MOS Technology Hex File Format1

INTRODUCTION

MOS Technology’s Hex file format allows program or data files to be encoded in a printable (ASCII)
format which is very similar to the Intel Hex format. This allows viewing of the object file with
standard tools and easy file transfer from one computer to another, or between a host and target.
An individual Hex-record is a single line in a file composed of many Hex-records.

HEX RECORD CONTENT

MOS Hex Records are character strings made of several fields which specify the record length, mem-
ory address, data, and checksum. Each byte of binary data is encoded as a 2-character hexadecimal
number: the first ASCII character representing the high-order 4 bits, and the second the low-order
4 bits of the byte.

The 5 fields which comprise a MOS Hex record are defined as follows:

1The information in this section was obtained from Internet sources. It is believed to be reliable, but no
warranty on accuracy or usage is provided.
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Field Format

Number Type Chars Description

1 Start code 1 An ASCII semicolon, “;”.

2 Byte count 2 Number (n) of character pairs in data field.

3 Address 4 The 2-byte memory address to load the data field.

4 Data 0-2n From 0 to n bytes of code or data, (n ≤ 32).

5 Checksum 4 Checksum over fields 2 through 4.

The checksum is the least significant word (2-bytes) of the sum of the values represented by all the
pairs of characters in the included fields.

Each record may be terminated with a CR/LF/NULL. Accuracy of transmission is ensured by the
byte count and checksum fields.

MOS HEX RECORD EXAMPLE

Following is a typical MOS Hex record module consisting of four data records and a termination
record.

;10B000576F77212044696420796F75207265610624
;10B0106C6C7920676F207468726F756768206106B9
;10B0206C6C20746861742074726F75626C652006C6
;0DB030746F207265616420746869733F05A3
;00

The fields in the first data record is explained as follows:

1. ; – Start code.

2. 10 – Hex 10 (decimal 16), indicating 16 data character pairs, 16 bytes of binary data in this
record.

3. B000 – Four-character, 2-byte, address field. Hex address B000, indicates location where the
following data is to be loaded.

4. The next 16 character pairs are the ASCII bytes of the actual program data.

5. 0624 – Checksum of the first MOS Hex record.
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The termination record is explained as follows:

1. ; – Start code.

2. 00 – Byte count is zero, no data or checksum in termination record.
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Appendix H

Motorola S-Record Format

Motorola S-record Format1

INTRODUCTION

Motorola’s S-record format for output modules was devised for the purpose of encoding programs or
data files in a printable (ASCII) format. This allows viewing of the object file with standard tools
and easy file transfer from one computer to another, or between a host and target. An individual
S-record is a single line in a file composed of many S-records.

S-RECORD CONTENT

S-Records are character strings made of several fields which specify the record type, record length,
memory address, data, and checksum. Each byte of binary data is encoded as a 2-character hex-
adecimal number: the first ASCII character representing the high-order 4 bits, and the second the
low-order 4 bits of the byte.

The 5 fields which comprise an S-record are defined as follows:

1The information in this section was obtained from Internet sources. It is believed to be reliable, but no
warranty on accuracy or usage is provided.
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Field Format

Number Type Chars Description

1 Record type 2 S-Record type — S1 or S9

2 Record length 2 The count (n) of the character pairs, excluding type and length.

3 Address 4 The 2-byte memory address to load the data field.

4 Data 0-2n From 0 to n bytes of code or data, (n ≤ 32).

5 Checksum 2 Checksum over fields 2 through 4.

The checksum consists of the least significant byte of the one’s complement of the sum of the values
represented by the pairs of characters making up the record length, address, and data fields.

Each record may be terminated with a CR/LF/NULL. Additionally, an S-record may have an initial
field to accommodate other data such as line numbers. Accuracy of transmission is ensured by the
record length (byte count) and checksum fields.

S-RECORD TYPES

Eight types of S-records have been defined to accommodate various encoding, transportation, and
decoding needs. Lucid programmers use the 8-bit data types, the S1 and S9:

S1 – A record containing data and the 2-byte address at which the data is to reside.

S9 – A termination record for a file of S1-records. Only one S9-record is allowed per file and it
must be the last line of the file. The address field for directly executable code may optionally
contain the 2-byte address of the instruction to which control is to be passed. For ROM data
the S9 address field is usually 0000. There is no data field.

S-RECORD EXAMPLE

The following is a typical S-record module:

S1130000285F245F2212226A000424290008237C2A
S11300100002000800082629001853812341001813
S113002041E900084E42234300182342000824A952
S107003000144ED492
S9030000FC

The module consists of four S1 data records and an S9 termination record. The first S1 data record
is explained as follows:

1. S1 – S-record type S1, indicating a data record to be loaded/verified at a 2-byte address.
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2. 13 – Hex 13 (decimal 19), indicating 19 character pairs, representing 19 bytes of binary data,
follow. (2 bytes address, 16 bytes data, 1 byte checksum)

3. 0000 – Four-character 2-byte address field: hex address 0000, indicates location where the
following data is to be loaded.

4. The next 16 character pairs are the ASCII bytes of the actual program data.

5. 2A – Checksum of the first S1-record.

The second and third S1 data records also contain $13 character pairs each. The fourth S1 data
record contains 7 character pairs.

The S9 termination record is explained as follows:

1. S9 – S-record type S9, indicating a termination record.

2. 03 – Hex 03, indicating three character pairs (3 bytes) to follow.

3. 0000 – Four-character 2-byte address field, zeros.

4. FC – Checksum of S9-record.
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Index

Symbols
< (low byte), 17
> (high byte), 17
* (multiply), 15
+ (add), 15
− (subtract), 15
/ (divide), 15
: (colon), 13
; (semicolon), 5
? (question mark), 13
@ (anonymous label), 34, 35
@ (at sign), 12, 13
@B (branch back), 35
@F (branch forward), 35
¨ (double quote), 12
# (immediate mode), 17, 34, 62
$ (hexadecimal radix), 17
% (binary radix), 17
% (mod operator), 15
´ (single quote), 12
BIN, 47
ROM, 47
~ (one’s complement), 15

(underscore), 13

Numbers
6502, 51
65xx, 1, 2, 11, 19, 29, 49, 51, 53, 57, 58, 61, 62,

64, 65, 69, 78
opcode chart, 83

6800, 1

A
abort

assembly, 8, 64
absolute

addressing, 17, 62
indexed, 63

accent, grave, 17, 19

accumulator, 16, 53, 57, 59, 61, 65
add +, 15
address

label, 5
memory, 4
pointer, 16
target, 34

addressing mode
absolute, 17, 62
absolute indexed, 63
accumulator, 61
immediate, 17, 62
implied, 61
indexed indirect, 49, 64
indirect, 49
indirect indexed, 63
zero page, 18, 62
zero page indexed, 63

algorithm, 78–80
.ALIGN, 19, 29

parameters, 29
alignment

even, 29
page, 29

allocate memory, 26, 47
ALU, 53
ambiguity

error location, 23
flags, 59
label, 5

AND
bitwise, 15
logical, 15

anonymous label, 7, 34, 35
maximum allowed, 7

architecture, CPU, 52
arithmetic operators, 14
ASCII

characters, 10–13, 26, 27
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chart, 85
assembler, 1–3, 5, 7

cross, 1
options, 7

assembly, 6

B
BIN, 21
binary data, 69, 89, 92, 95
binary file, 47
binary number %, 17
bit

absolute, 20
zero page, 20

bitwise operator, 15
boolean, 15
boundary

alignment, 29
even, 29
page, 29

page
branching, 30
crossing, 30, 49
indexing, 30

branch
anonymous label, 35
cycle count, 30
cycle symbols, 30
distance, 35, 36
target, 34

byte
align, 29
compare, 58
fill, 28, 29
high, 16, 17, 63
last on page, 49
low, 16, 17, 63
maximum, 47
multi, 65

.BYTE, 20, 27, 28
.BY, 20, 27
.DB, 20, 27

C
carriage return, 27
C flag, 59
carry flag, 57, 65

rotate/shift, 65

case
lower, 23, 27
sensitivity, 9
upper, 27, 32

character
alphabetic, 13
ASCII, 10–12, 62
hexadecimal, 11
labels, 5
numeric, 13
special, 17

chart
ASCII, 85
hex/decimal, 86
opcode, 83
precedence, 17

checksum, 47, 96
Intel Hex, 90
MOS Technology Hex, 93
option, 26

CHKSUM, 26
clock, 65xx, 51
code

analysis, 1, 5
binary, 21
checksum, 26
development, 1, 8
invalid, 8
listings, 3–5, 22, 41
source, 6, 49

colon :, 8, 90
COLS, 10, 22
column, 3, 4

first, 4, 5, 10
leftmost, 23
maximum, 22

comma
separator, 13, 21

command line, 7
options, 7

comments, 5, 10, 35
Commodore, 1
compare, 79

examples, 87
flags, 59

complement
one’s, 15, 96
two’s, 90
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complex
code, 65
expression, 14
file, 11
instruction set, 64

condition
page fault, 49, 63

constants, 11
16-bit, 27
8-bit, 26
character, 11, 12
numeric, 11

contents
chapter, 1
log file, 21, 25, 40

control
file, 7, 21

conversion
BCD to binary, 69
binary to BCD, 69
hex to decimal, 86

count
byte, 90, 93, 96
cycle, 2, 3, 19, 22, 29–31
instruction, 2, 25

CPU
flags, 87–88

combination, 59
instructions

bit, 59
compare, 58
flags, 60
jump, 61
modify data, 56
move data, 55

registers, 52
CSORT, 26
CYCLES, 22

D
decimal, 11, 45, 62, 86
default

addressing mode, 18
columns, 22
configuration options, 8
file, 21
files, 8, 10
line numbering, 25

radix, 11
rows, 22

delimiter
string, 12, 32

diagram
pinout, 84
processor, 53
register, 52
shift/rotate, 57

digits, 11
ASCII, 12
BCD, 74
binary, 11
checksum, 26
decimal, 11
hexadecimal, 11

directive, 5, 10, 20
directives, 4, 5
disassembler, 1
divide /, 15

E
.ECHO, 20, 32
emulator, 1
.END, 20, 37, 49
eprom, 46, 47
EQ (equal), 16
.EQU, 10, 20, 32, 47
error, 8, 41

location, 8, 23, 37
log, 40
logic, 8
message, 11, 21, 48
phase, 7
range, 34, 36
rom size, 21

even alignment, 29
example

anonymous label, 7
binary number, 11
character constant, 12
delimiter, 12
readability, 3
source file, 10
unary minus, 14

expand
8-bit to 16-bit, 27
include file, 6
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expressions, 14–18, 21, 28
extender, 7

F
file, 21

control, 21
executable, 1, 6
format, 10
include, 6, 23, 37
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hex symbol $, 11
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