
 
 

 
 

ABSTRACT 

 

DEVELOPMENTS IN TRIPLE QUADRUPOLE MASS SPECTROMETRY 

I. A Distributed Processing Control System 

II. Screening Applications for Fuel Analysis 

 

 

by 

 

 

Carl Alan Myerholtz 

 

 

 

 

A data acquisition and control system for a triple quadrupole 

mass spectrometer has been developed using several microprocessors in 

a distributed processing system. This system includes four processors, 

one acting as the system master controlling three slave processors. 

In such a distributed processing system each processor is assigned a 

specific task. Critical to this application is the allocation of the 

task of data acquisition, ion path control, and peak finding to 

separate slave processors. This modular approach leads to a system 

where each major section of the instrument has its own dedicated 

intelligence.  



 
 

 
 

This parallel processing system allows operations that are often 

implemented in hardware (for speed considerations) to be performed in 

software. For an instrument operating in the research environment, 

the flexibility of a primarily software based system is a great 

benefit. In this implementation both the hardware and the software 

become more modular, making it easier to implement and test different 

data acquisition, peak finding, and scanning algorithms.  

The use of triple quadrupole mass spectrometry, an MS/MS 

technique, to detect selected species in middle distillate fuels has 

been examined. Nonparaffinic components, which are mainly aromatic 

and heteroaromatics containing nitrogen or sulfur, contribute to the 

formation of undesirable deposits during the storage and combustion 

are of particular interest where aviation fuels are concerned. 

Collision-activated dissociation (CAD) spectra were obtained for 

reference compounds from several heteroatom-containing compound 

classes. These included the thiophenes, thiols, nitrobenzenes, 

pyridines and anilines. The alkylbenzenes were examined in addition 

to heteroatom-containing species. The CAD results were used to select 

screening reactions for each compound class. The effectiveness of 

these screening reactions was demonstrated by identifying the presence 

of various species in samples of Jet A aviation fuel, a shale oil 

derived fuel and No. 2 diesel fuel. Triple quadrupole mass 

spectrometry can be used to rapidly identify a number of different 

components in middle distillate fuels. This information can be an aid 

to studies of fuel composition and stability.   



 
 

 

 

 

 

 

 

 

 

 

 

DEVELOPMENTS IN TRIPLE QUADRUPOLE MASS SPECTROMETRY 

I. A Distributed Processing Control System 

II. Screening Applications for Fuel Analysis 

 

 

 

 

 

by 

 

Carl Alan Myerholtz 

 

 

 

 



 
 

 
 

 

 

A DISSERTATION 

 

 

 

 

 

 

Submitted to 

Michigan State University 

in partial fulfillment of the requirements 

for the degree of 

 

 

 

DOCTOR OF PHILOSOPHY 

 

 

Department of Chemistry 

 

1983 

 

 

 



 
 

ii 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copywrite by 

Carl Alan Myerholtz 

1983 

 

  



 
 

iii 
 

 

ACKNOWLEDGMENTS 
 

 

 

I would like to thank Dr. Chris Enke under whose guidance this work 

was performed, for providing an environment of freedom and challenge. 

I thank the fellow members of the research group and the department 

for making Michigan State a unique place to work. I would like to 

recognize Dan Sheffield for is contribution to the quality of many of 

the figures presented here.  

Financial support for myself was provided by grants from the National 

Aeronautics and Space Administration (NASA) and Extranuclear Inc. 

Financial support for the TQMS instrumentation project was provided 

by the Office of Naval Research (ONR).  

Finally I would like to express my appreciation to my many friends 

and my parents for their support during my stay in Michigan. I would 

especially like to thank Uncle Bruce, Tom Atkinson, George Lucas, the 

makers of Pepsi-Cola, and the people at Bangaway Engineering for 

helping me preserve my sanity and survive this experience. 

  



 
 

iv 
 

Table of Contents 
 

ACKNOWLEDGMENTS ........................................................................................................................... iii 

Table of Contents .................................................................................................................................. iv 

List of Tables .......................................................................................................................................... vi 

List of Figures ........................................................................................................................................ vii 

Part I. A Distributed Processing Control System .................................................................................... 1 

Chapter 1 : INTRODUCTION .................................................................................................................... 2 

ORGANIZATION .................................................... 3 

INTRODUCTION TO THE RESEARCH .................................... 4 

Chapter 2 : Distribution and Coordination of Tasks ............................................................................... 8 

INTRODUCTION ................................................... 10 

DISTRIBUTED SYSTEMS ............................................ 11 

SCHEMES OF PARTITIONING ........................................ 12 

RELATIONSHIPS AMONG TASKS ...................................... 14 

ADVANTAGES OF MODULARITY ....................................... 18 

INTERPROCESSOR COMMUNICATION REQUIREMENTS ...................... 20 

SOFTWARE CONSIDERATIONS ........................................ 22 

SYSTEM DESIGN CONSIDERATIONS ................................... 25 

REFERENCES ..................................................... 27 

Chapter 3 : INTERPROCESSOR HARDWARE OVERVIEW ....................................................................... 28 

REFERENCES ..................................................... 33 

Chapter 4 : An Integrated Software System ......................................................................................... 34 

SOFTWARE SELECTION CONSIDERATIONS .............................. 36 

SELECTION OF THE FORTH LANGUAGE SYSTEM ......................... 38 

ADAPTING FORTH TO A DISTRIBUTED ENVIRONMENT .................... 44 

DIRECTING SLAVE PROCESSORS ..................................... 47 

MASTER PROCESSOR FORTH EXTENSIONS .............................. 49 

RESULTS AND CONCLUSIONS ........................................ 52 

REFERENCES ..................................................... 55 

Chapter 5 : A Distributed Processing Control System .......................................................................... 56 

DESIRABLE CONTROL SYSTEM FEATURES .............................. 62 

DISTRIBUTED PROCESSING SYSTEMS ................................. 66 

PARTITIONING OF TASKS .......................................... 68 



 
 

v 
 

MICROPROCESSOR SYSTEM HARDWARE ................................. 71 

INTERPROCESSOR HARDWARE ........................................ 73 

SOFTWARE ....................................................... 77 

CONTROL SYSTEM DESIGN CONSIDERATIONS ........................... 81 

IMPLEMENTATION OF TQMS CONTROL FUNCTIONS ....................... 84 

USER INTERFACE ................................................. 92 

USER PROGRAMABILITY ........................................... 101 

SUMMARY ....................................................... 105 

REFERENCES .................................................... 108 

Part II. Screening Applications for Fuel Analysis ................................................................................ 110 

Chapter 6 : Screening Aviation Fuels for Thiophenes ........................................................................ 111 

ABSTRACT ...................................................... 113 

EXPERIMENTAL SECTION .......................................... 115 

RESULTS AND DISCUSSION ........................................ 116 

CONCLUSIONS ................................................... 128 

ACKNOWLEDGMENTS ............................................... 128 

REFERENCES .................................................... 129 

Chapter 7 : Screening Fuels for Selected Species ............................................................................... 130 

ABSTRACT ...................................................... 132 

EXPERIMENTAL .................................................. 138 

RESULTS AND DISCUSSION ........................................ 139 

CONCLUSIONS ................................................... 152 

ACKNOWLEDGMENTS ............................................... 153 

REFERENCES .................................................... 154 

Chapter 8 : COMMENTS AND SUGGESTIONS ..................................................................................... 155 

APPENDIX A ........................................................................................................................................ 161 

 

  



 
 

vi 
 

 

 

 

List of Tables 
 

Table 2.1 Advantages of Distributed Processing Systems 13 

Table 2.2 Interprocessor Communication Modes 21 

Table 2.3 Summary of Distributed Processing System Design Goals 26 

Table 4.1 Interprocessor Memory Access Words 46 

Table 4.2 User Extensions to FORTH and the Target for the master processor

 53 

Table 5.1 Desirable Attributes for a Control System 63 

Table 5.2 Advantages of Distributed Processing Systems 67 

Table 5.3 Modes and Paths of Interprocessor Communication 75 

Table 5.4 TQMS devices and their mnemonic names 83 

Table 5.5 Selected control system commands and their function. 102 

Table 6.1 CAD spectra of reference compounds 118 

Table 6.2 Summary of characteristic ions 120 

Table 6.3 Thiophenes, reactions, retention times 127 

Table 7.1 Daughters of Reference Compounds. 141 

Table 7.2 Summary of Screening Reactions 144 

 

  



 
 

vii 
 

List of Figures 
 

 

Figure 1.1 Compound Classes Studied...................................... 6 

Figure 2.1 Loosely-coupled Tasks........................................ 16 

Figure 2.2 Tightly-coupled Tasks........................................ 16 

Figure 2.3 System with Loosely and Tightly Coupled Tasks................ 16 

Figure 3.1 Interprocessor Communication Path Block Diagram.............. 31 

Figure 4.1 FORTH programming examples illustrating how words build into 

more and more powerful commands. .................................... 41 

Figure 4.2 Sample Multiprocessor Program................................ 51 

Figure 5.1 Distributed Intelligence..................................... 61 

Figure 5.2 Multiprocessor Topologies.................................... 69 

Figure 5.3 Modular Hardware System...................................... 72 

Figure 5.4 Distributed Processing Modules............................... 74 

Figure 5.5 Sample FORTH Program......................................... 80 

Figure 5.6 TQMS Control System Block Diagram............................ 86 

Figure 5.7 Parallel Processing Timing Diagram........................... 91 

Figure 5.8 Parameter Editor Display..................................... 95 

Figure 5.9 Softknobs Functional Diagram................................. 99 

Figure 5.10 Mass spectrometry programming examples..................... 103 

Figure 6.1 Thiophene Decomposition Mechanisms.......................... 119 

Figure 6.2 45 Neutral Loss from Jet A and Shale oil.................... 122 

Figure 6.3 Raw Spectra of Jet A and Shale oil.......................... 123 

Figure 6.4 97+ Parent scans of Jet A and Shale oil..................... 124 

Figure 6.5 Multiple Reaction Monitoring Chromatograms.................. 126 

Figure 7.1 TQMS instrument block diagram............................... 135 

Figure 7.2 TQMS modes used in Mixture analysis......................... 136 



 
 

viii 
 

Figure 7.3 Raw MS of Jet A, Shale Oil and Diesel fuel.................. 145 

Figure 7.4 Parents of 97+ for Jet A, Shale Oil, Diesel................. 146 

Figure 7.5 Parents of 91+ for Jet A, Shale Oil, Diesel................. 148 

Figure 7.6 Loss of 54 from Jet A, Shale Oil, Diesel.................... 149 

Figure 7.7 Loss of 46 from Jet A, Diesel............................... 150 

Figure 7.8 Loss of 27 and 17 from Shale Oil............................ 151 

Figure 8.1 Compound Classes for Future Study........................... 158 

 

 

  



 

1 
 

Part I. A Distributed Processing Control 

System 
  



2 
 

2 
 

Chapter 1 : INTRODUCTION 
 

  



3 
 

3 
 

ORGANIZATION 

 

The research covered in this dissertation spans two different 

areas and the dissertation is divided accordingly. Part I is a 

description of several instrumentation developments and Part II is a 

description of the application of triple quadrupole mass spectrometry 

(TQMS) to hydrocarbon fuel analysis. Part I is made up of Chapters 2 

through 5. instrumentation developments and applications. Chapters 2 

thru 4 deal with the development of the hardware and software of a 

distributed processing system for real-time instrument control. The 

development of a control system for a triple quadrupole mass 

spectrometer using this distributed processing system is discussed in 

Chapter 5. Chapters 2,4 and 5 are presented in manuscript form.  

Applications of triple quadrupole mass spectrometry to the 

screening of hydrocarbon fuels for selected species are described in 

Chapters 6 and 7, which form Part II of this dissertation. These 

chapters are also presented in manuscript form. Chapter 8 contains 

comments and suggestions of area for further investigation.  

The user's manual for the triple quadrupole mass spectrometer 

control system is included in Appendix A. This document provides a 

more complete description of the capabilities of the control system 

than could have been covered in the manuscript format of Chapter 5.  
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INTRODUCTION TO THE RESEARCH  

The overall objective of the author's research was the 

development and advancement of laboratory instrumentation. A related 

goal was to demonstrate the application of TQMS to the detection of 

selected species in complex mixtures.  

Instrument Control System Development  

The main focus of the instrumentation work was the development 

of a distributed processing system for real-time instrument control. 

This work was a collaborative project with Mr. Bruce Newcome. The 

results and application of this work is described in Chapters 2 thru 

5. The duration, complexity, and sophistication of this project make 

the separate identification of the author's work and that of Mr. 

Newcome very difficult. On the first level, it is very simple; all of 

the software was written by the author, while all of the hardware was 

developed by Mr. Newcome. However, in the synergism generated by many 

a late night discussion, many of the author's suggestions were 

incorporated in the final hardware designs and many of Mr. Newcome's 

suggestions were incorporated into the software system. In other 

words, it was a real team effort in the best sense of that phrase. 

Nevertheless, consistent with our primary responsibilities, the 

system descriptions contained in this dissertation concentrate on the 

software aspects of the instrumentation developments.  

Chapter 2 is an introduction to distributed processing and some 

of the special needs of real-time instrument control systems. Chapter 
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3 is a brief overview of the hardware system developed as part of the 

distributed processing project. In Chapter 4, the development of an 

integrated software package for program development and operations in 

a distributed processing environment are discussed. Software for 

laboratory instrumentation is an area often overlooked by scientists 

in the field. Many people fail to look at software and programming 

languages as tools. This is somewhat due to the fact the software is 

so flexible it can be bent into just about any shape needed. The 

suitability of a tool for a job often determines whether or not it is 

practical to undertake a given task.  

Laboratory instrumentation has made a great step forward by 

moving from the strip chart recorder to the microcomputer for data 

acquisition. However, the microcomputer acts as only a glorified strip 

chart recorder if data acquisition is its only function. The next 

real breakthrough in laboratory instrumentation needs to be and will 

be in the software field. It is important when developing new tools 

for laboratory automation that software capabilities be developed 

along with improved hardware capabilities.  

Fuel Analysis Applications  

Chapters 6 and 7 describe the application of triple quadrupole 

mass spectrometry to screening hydrocarbon fuels of selected species. 

These species are illustrated in Figure 1.1.  
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Figure 1.1 Compound Classes Studied 
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Heteroatom containing species are present in low-levels in most 

hydrocarbon based fuels. It has been demonstrated that some of these 

species are detrimental to the storage and thermal stabilities of the 

fuel. The ability to rapidly identify which species are present in a 

fuel sample would be a substantial aid to fuel stability studies. The 

separatory power of TQMS can be used to selectively detect the 

presence of many, if not all heteroatom-containing species in complex 

hydrocarbon mixtures. The paper presented in chapter 6 is a detailed 

study of the determination and confirmation of a screening procedure 

for thiophenes in jet aircraft fuels. Chapter 7 is intended as an 

introduction to the application of TQMS for fuels screening and 

describes the selection and implementation of screening procedures 

for several classes of compounds.   



 

8 
 

Chapter 2 : Distribution and Coordination of 

Tasks 
  



9 
 

 
 

 

A Distributed Processing System for Real-Time Instrument Control 

1. Distribution and Coordination of Tasks 

 

Carl A. Myerholtz 

Bruce H. Newcome 

Christie G. Enke 

Department of Chemistry 

Michigan State University 

East Lansing, MI 48824 

  



10 
 

 
 

INTRODUCTION 

 

In recent years advances in computer technology have greatly 

increased the power and sophistication of mini- and microcomputer 

systems, while at the same time their cost has been dramatically 

reduced. As a result, the use of small computer systems in the 

laboratory for instrument control applications has expanded greatly. 

Laboratory computer systems were initially used principally to perform 

data acquisition and preliminary data reduction functions, often 

acting as little more than intelligent strip chart recorders. As the 

performance/cost ratio increased, small computers were incorporated 

directly into laboratory instruments and took on increasing 

responsibility for control operations such as temperature programming 

and scan generation. In addition, the data acquisition and reduction 

functions increased in sophistication. The results of this evolution 

are recent-generation instruments which incorporate real-time control 

and data acquisition systems and which work interactively with the 

operator to optimize the data resulting from an experiment. Ideally 

these systems control as many instrument parameters as practical and 

automatically record these parameters along with the acquired data to 

create a complete experimental record. However, as powerful as these 

small processors are, the demands of high speed data acquisition and 

instrument control can exceed the processing capabilities of a single 

processor. It is important for instrument control systems to advance 

beyond these limitations so that they can be applied to larger and 
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more complex instruments where the need for increasingly intelligent 

instrument control is extremely great.  

DISTRIBUTED SYSTEMS  

 

There are several approaches that can be taken to implement 

advanced control systems with higher performance than is commonly 

seen today. One solution to this problem is the development of 

specialized hardware to solve a specific problem. This approach has 

several drawbacks among which are the time needed to develop and test 

the hardware and the difficulty in adapting specially tailored 

hardware to new experimental demands. A second approach is to employ 

bigger and faster computer systems that are capable of executing 

control functions and processing information more rapidly than their 

predecessors. A problem with this approach is that the increase in 

computing power becomes more expensive as the level of performance 

increases. An alternate solution is the use of more than one processor 

in a system to expand the amount of computing power available to the 

process. This results in a distributed processing environment where 

each processor is a assigned a specific task or set of tasks to 

perform.  

Systems utilizing more than one processor typically fall into 

one of two classes, distributed processing systems and multiprocessing 

systems. In a distributed processing system, the work load is spread 

over several processors by assigning a set of tasks to each processor. 

The processors are not necessarily identical; each may incorporate 
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enhancements such as special interfaces or numeric coprocessors to 

enable them to perform their allotted tasks. In a multiprocessing 

system the work load is spread over several "equal" processors by 

assigning tasks to any unoccupied processor. A number of the 

advantages of distributed processing systems are listed in Table 2.11.  

 

SCHEMES OF PARTITIONING  

 

Partitioning tasks into separate processors takes a variety 

forms depending on the functions being implemented and the criteria 

used to separate tasks. Three of the major forms of task partitioning 

are: horizontal partitioning, vertical partitioning, and partitioning 

based on data access2. Two tasks can be horizontally partitioned if 

they can be executed without regard to order or can be executed 

concurrently. Vertical partitioning involves the separation of tasks 

that have predecessor-successor relationships. These relationships 

may arise from data dependency or control flow considerations. 

Partitions based on data access separate tasks by what data they 

operate on. Temporal order, control and direction of data flow are 

not considered. Since most tasks involved in real-time instrument 

control have some form of predecessor-successor relationship, efforts 

in this project were directed toward developing a distributed 

processing system utilizing vertical task partitioning. This required 

the development of efficient communication links between the 

processors.  
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Table 2.1 Advantages of Distributed Processing Systems 

 

Faster Execution 

• Parallel execution 

• Less time spent in "overhead" 

• Simpler addition of hardware controllers and processors 

 

Independent Task Execution 

• Non-interference of tasks 

• Elimination of task interleaving programs 

• Elimination of priority assignment programs 

• Simpler task program modification 

 

Modularity of Hardware and Software 

• Consolidation of related tasks 

• Simpler extension of instrument capability 

• Simpler debugging and troubleshooting 
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RELATIONSHIPS AMONG TASKS  

 

Tasks in a distributed processing system can be of several forms, 

terminal, loosely-coupled, or tightly-coupled. The main differences 

among these types of tasks are their degree of interaction with other 

tasks and the time scale of the interaction. It is important not to 

confuse the discussion of loosely and tightly coupled tasks in a 

distributed processing system with loosely and tightly coupled 

communication between processors in a multiple processor system. 

Loosely-coupled processor systems use shared peripherals to pass 

messages, while tightly-coupled systems use shared memory to pass 

messages3.  

Once a terminal task is started, no interaction with the other 

processors in the system is necessary until the task is completed. 

The size and complexity of a terminal task is such that only one 

processor is needed to perform the task. Many computer systems today 

have some distributed processing characteristics as the result of the 

use of what are often described as intelligent peripherals. 

Intelligent peripherals are used to off-load terminal type tasks from 

the main processor. Most intelligent peripherals owe their 

intelligence to small microprocessor systems that are used to control 

the peripheral. A common example of this is the dot-matrix printer 

which incorporates microprocessor control with a large communications 

buffer. The main computer and the microprocessor in the printer form 

a simple two-processor distributed system. The main processor can 
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transfer data to be printed to the control microprocessor, which can 

then print the data without further intervention from the main 

processor. This is a good example of a terminal type task. The duration 

of the task is on the order of seconds or minutes and, once started, 

little or no communication with other processors in the system is 

necessary.  

Loosely-coupled tasks involve more interaction between tasks on 

separate processors. These tasks are often components of a task the 

system is performing instead of separate independent functions as in 

the case of terminal tasks. Figure 2.1 illustrates a two-processor 

system performing loosely-coupled tasks. Processor one's task is to 

acquire 100 data points at some fixed sampling rate.  

When 100 points have been acquired they are transferred to 

processor two. After the transfer is completed processor one is free 

to start acquiring the next set of 100 data points. During this time 

processor two writes the data to a disk and is ready to receive the 

next set of points before processor one has completed acquisition of 

the second set of points. Loosely-coupled tasks often require 

interaction between tasks on the millisecond time scale.  

Tightly-coupled tasks are similar to loosely-coupled tasks; 

however, the subtasks each processor is performing form a smaller 

portion of the overall task being performed by the system. More 

coordination between tasks is needed and must take place on a shorter 

time scale. A single-processor system is compared to a two-processor 

system performing a set of tightly coupled tasks in Figure 2.2. This  
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Figure 2.1 Loosely-coupled Tasks 

Figure 2.2 Tightly-coupled Tasks 

Figure 2.3 System with Loosely and Tightly Coupled Tasks 
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example involves an experiment that requires that a voltage be sent 

to a DAC a value be measured, a new voltage calculated, the DAC be 

updated, and so on. Figure 2.2a illustrates this set of tasks 

implemented on a single processor system. Figure 2.2b demonstrates 

how these tasks might be divided between two processors in a tightly-

coupled system to increase the sampling throughput. Processor one is 

assigned the task of controlling the DAC, while processor two is 

dedicated to acquiring the data. When processor one has set the DAC 

to a new value, processor two may begin to acquire a data point. At 

the same time processor one may begin computing the next voltage to 

send to the DAC so that when acquisition of the first data point is 

completed a new value may be immediately send to the DAC and the whole 

process repeated again. Tightly-coupled tasks often require 

interaction among tasks on the microsecond time scale.  

Distributed processing systems can be designed to handle any 

task type or combination of task types, the primary differences being 

the amount and speed of the communication needed between tasks on 

different processors. Figure 2.3 illustrates how, in a distributed 

system, three processors can interact with each other while performing 

both loosely and tightly coupled tasks. Processors one and two form 

a two-processor system, executing tightly-coupled tasks like that 

shown in Figure 2.2b. Processor three executes a task which stores 

the data on a disk. That task is loosely coupled to the operation 

being performed by processors one and two. The resulting system is 

much like the system described in Figure 2.1. Processors one and two 

execute tightly-coupled tasks to perform the data acquisition function 
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that processor one in Figure 2.1 performed, while processor three 

performs a loosely-coupled task to write data to a disk as did 

processor two in Figure 2.1. This example demonstrates the powerful 

modularity of distributed processing systems.  

ADVANTAGES OF MODULARITY  

 

The inherent modularity of distributed processing systems offers 

a number of advantages, in both hardware and software, over a large, 

single-processor system. Among the advantages realized with a 

distributed processing system are a higher cost-to-performance ratio, 

simple expansion, simpler, more modular software, and less stringent 

demands on the hardware design. The higher cost-to-performance ratio 

comes about because to double the performance of a single processor 

system usually costs more than twice as much, whereas adding a second 

processor to the system is more of a linear addition in cost. Also, 

there is an inherent limit to the performance available in a single 

processor system, whereas in distributed processing systems the 

performance can be upgraded until the maximum number of processors 

capable of being supported is reached. The ready expandability of 

distributed systems is economical in both cost and more importantly 

time. Take a case where experimental demands change after a system is 

in use and a 25% increase in processing speed is needed. In a single 

processor system, the main processor would need to be replaced, most 

likely requiring new hardware interfaces and new or rewritten software 

for the new processor. A distributed processing system could achieve 
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the needed increase in performance with the addition of another 

processor and with changes only in the routines affected by the 

additional processor. By spreading the processing demands over several 

computers, the demands on the hardware system become less strenuous. 

Five processors operating with 1 MHz bus bandwidths are easier to 

implement and more noise immune than a single processor system with 

a 5 MHz bus bandwidth.  

Distributed processing systems benefit from the separation of 

tasks to different processors. In a single processor system which is 

performing multiple tasks, as the number of tasks increases more and 

more of the processor's time is spent changing from on task to 

another4. A distributed processing system with tasks running on 

separate processors does not suffer from this task switching overhead. 

Since multiple tasks can be split into separate processors, 

programming complex applications can become much easier. A programmer 

can create separate routines for each function on different processors 

without programming multiple tasks into a single loop or concern about 

interrupt latency and throughput. This independency of tasks can 

greatly ease the adaptation of the system to new experimental demands. 

Routines in separate processors can often be more readily modified 

with less interference to other tasks than can routines in a single 

processor system. The systems described in Figure 2.2 can be examples 

of this. If a new, slightly longer and more complex algorithm was 

needed to calculate the new DAC values, the system in Figure 2.2a 

would suffer a reduction in the overall sampling rate and additional 

difficulties in programming could be posed if register use were 
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critical. The acquisition routine might have to be recoded to make up 

for the additional computational time of the DAC routine. This would 

not be the case in the system in Figure 2.2b; the DAC routines could 

be modified without having to disturb the acquisition code at all.  

INTERPROCESSOR COMMUNICATION REQUIREMENTS  

 

Once a system has evolved into a distributed processing system, 

it becomes necessary to define how the different processors in the 

system will communicate with one another. The various modes of 

communication needed for real-time instrument control are summarized 

in Table 2.2. The transfer of blocks of information between processors 

is necessary so that programs may be loaded into the processors and 

data sets may be handled efficiently. A mechanism is needed to 

instruct the various processors in the order in which to execute their 

designated tasks. The ability to queue up a series of tasks for 

execution by a given processor is a desirable feature. The assignment 

of succeeding tasks to a processor should not interfere with the task 

currently being executed. Parameter passing involves the transfer of 

small amounts of information between processors. Often these are 

parameters that modify the execution of tasks assigned to a processor, 

specifying such information as number of iterations or scanning speed. 

A method for passing task status information between processors is 

needed so that the execution of tasks in separate processors can be 

coordinated. As in the case of task assignment, it is preferable that  
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Table 2.2 Interprocessor Communication Modes 

 

 

1. Block data transfer 

2. Task assignment 

3. Parameter transfer 

4. Task coordination 

 

  



22 
 

 
 

the coordination of processors does not interfere with the execution 

of tasks.  

These different modes of communication between processors could 

be supported by the use of shared memory. However, there are 

advantages in both speed and non-interference if the different modes 

are supported by dedicated hardware. Hardware support for the various 

communication modes can be implemented so that none of the 

communication modes interfere with tasks being executed by a 

processor. However, in the case of block data transfer interference 

is not a major consideration. This is because these types of transfers 

take place at system startup when code is loaded into a processor or 

when a processor requests that a block of data be transferred from 

its memory and is therefore not executing a time-critical task. 

Allowing the block data transfer to interfere with task execution on 

a processor allows the hardware to suspend operation of the second 

processor during the transfer. This performance concession can greatly 

reduce the complexity of the hardware needed to support block data 

transfers.  

SOFTWARE CONSIDERATIONS  

 

An important consideration of the software system is its 

suitability for instrument control applications. An excellent 

discussion of the features needed in a language for laboratory use 

can be found in ref.5 Real-time instrument control requires the ability 

to control many specialized interfaces in a timely manner. The ease 
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of interaction with specialized hardware and the speed of program 

operation are important features in software for control applications. 

In the research laboratory experiment design is constantly evolving. 

The software for a control system should make it easy to adapt a 

system to changing experimental needs. Utilization of a high-level 

language tailored for instrument control applications can facilitate 

programming of the system by novice users. The use of a consistent 

high-level language across all processors can reduce the complexity 

of programming in the distributed programming environment.  

Although in some cases, additional processors can readily be 

added to a system by merely plugging them into the system backplane, 

developing the software to run a distributed processor system is not 

as simple. In the first place there are almost no readily available 

operating systems for small distributed processing systems. Secondly 

few languages have been developed for programming multiple processor 

systems. In many distributed processing systems, most of the 

processors operate more like dedicated intelligent peripherals, 

usually running programs developed in assembly language that are 

stored in programmable-read-only memory (PROM). This approach is not 

very acceptable in a research laboratory where the demands on 

instrument control systems are constantly changing. The time consuming 

cycle of assembly language coding, PROM programming, and code testing 

inhibits the flexibility and adaptability of the system.  

The need to be able to readily modify the software running in 

the various processors gives rise to a number of design considerations 
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for the software system used to run a distributed processing control 

system in a research laboratory. Among these are the use of processors 

that mainly run software loaded into random-access memory (read/write 

memory or RAM) so that the software can be readily modified or 

replaced. The use of a high-level language to program all of the 

processors in a system makes programming faster, easier and more 

efficient.  

The system should allow for local program development so that 

new routines can be developed and tested interactively with the 

instrument, possibly even during an experimental session. This 

precludes the use of cross compilers and assemblers that run on larger 

computer systems. Here only the resulting object code is transferred 

to the control system, and all program development must be performed 

offline. The use of cross compilers and assemblers can be particularly 

frustrating during the testing and debugging stage of software 

development. As each problem is corrected the programmer must go to 

a different machine and make the necessary changes, recompile the 

program, and transfer it to the control system again. This results in 

the need for an operating system and programming language small enough 

to reside on the control system but powerful and flexible enough to 

allow for rapid program development on several processors as well.  
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SYSTEM DESIGN CONSIDERATIONS  

 

As part of an ongoing investigation of laboratory 

instrumentation systems, our research group embarked on the 

development of a distributed processing system for laboratory 

instrument control. The design goals of this project are summarized 

in Table 3. The details of this system are presented in two additional 

manuscripts. The first covers the design and implementation of the 

system hardware. The second discusses the development of a software 

system to utilize the power of the distributed processing hardware.  

Utilization of distributed processing techniques can provide the 

scientist with the needed computing power to develop the next 

generation of intelligent instruments. These systems will include 

among their extensive capabilities aids to the optimization of 

experimental conditions, optimization of data acquisition parameters 

in real-time, and automatic sequencing among different experimental 

conditions and configurations.  
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Table 2.3 Summary of Distributed Processing System Design Goals 

 

 

1. Implementation of Interprocessor Communication Modes 

2. Non-interference with Timely Events 

3. No resident Monitor Required in Auxiliary Processors 

4. Modularity of Hardware and Software Systems 

5. Easy Transition from a Single Processor to a Distributed 

Processing System 

6. Readily Programmable by Non-expert Users 

7. Readily Adaptable to Changing Experimental Needs 

8. Efficient Software Environment for Real-time Instrument 

Control 
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Although the hardware for this system has been discussed in 

detail elsewhere6, a brief review will aid in setting the background 

for the software description to follow. The hardware uses modules 

that were created as part of a project to develop a flexible 

microcomputer system for the research laboratory environment7. Each 

module implements an individual function; the modules include central 

processing unit (CPU), memory, parallel interface, analog-to-digital 

converter, etc. Several of these modules may be mounted on a 

motherboard that connects them to a common data and address bus. 

Multiple motherboards may be plugged into a common backplane to 

configure a computer system with the desired capabilities. Over the 

three year life of this project, more than twenty function modules 

have been developed including two CPU modules, one utilizing an Intel 

8085 microprocessor and the other an Intel 8088 microprocessor. Five 

of the modules developed provide interfaces to an interprocessor 

communications bus.  

When this hardware is configured in a distributed processing 

system through the interprocessor bus, it can support up to eight 

CPUs running in parallel. Each processor in the system is assigned a 

processor ID number between 0 and 7. The master processor is given an 

ID number of 0, while any slave processors in the system are numbered 

consecutively starting at 1. The prototype distributed processor 

system which operates a triple quadrupole mass spectrometer consists 

of one master processor and three independent slave processors. In 

this system all of the processors utilize the 8088 CPU module. The 

master processor is interfaced to a CRT terminal and a printer for 
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user interaction, and an 8-megabyte Winchester disk drive for program 

and data storage. Each slave processor is assigned a specific set of 

functions and has only the instrument interfaces needed to perform 

those specific functions. The slave processors are dedicated to 

specific tasks and are not general purpose or interchangeable 

processing units as is the case in some distributed processing systems 

optimized for other purposes.  

In the distributed processor environment, three types of 

interprocessor communication are supported by specialized interface 

modules. The interconnection of the processors by these communication 

links is illustrated in Figure 3.1. Three interprocessor communication 

modules are mounted on a motherboard to form links between a 

processor's local data and address bus and an interprocessor 

communications bus. Each processor in the system has one 

interprocessor motherboard plugged into its backplane. One of the 

three interprocessor modules supports the direct memory transfer (DMT) 

communication mode. The DMT mode allows the master processor to 

transfer data between any two processors in the system. The master 

processor can perform a transfer between the memory on any two slaves 

or between memory on the master and any slave. This is accomplished 

with bus switching hardware that puts any slave processor involved in 

a transfer on hold and connects its local data and address bus to the 

interprocessor communications bus. When the transfer is completed, 

the slave processor's bus is released, and program execution in the 

slave is resumed.  
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Figure 3.1 Interprocessor Communication Path Block Diagram 
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A second interprocessor module supports a method of 

communication called the command transfer mode. The hardware on this 

module consists of first-in-first-out (FIFO) buffers for each slave 

processor. Each FIFO is 24 bits wide and 32 elements deep and is 

referred to as a command buffer. The master processor can write data 

into any slave's FIFO which then can be read out and interpreted by 

the slave. The low order 20 bits written by the master are stored in 

the FIFO as data. The four high order bits are hardware control 

signals that can be used to immediately reset, hold or interrupt the 

slave processor.  

The third interprocessor module provides a communication mode 

called status transfer. The hardware on this module involves 16 bytes 

of dual-port memory. Each processor in the system (maximum of eight) 

is assigned two bytes of status information: one hardware status byte 

and one software status byte. These are maintained up to date in each 

computer's dual-port memory. The hardware status byte for each 

processor includes such information on the processor as command buffer 

full or empty, and processor halted.  The software status byte is 

used to synchronize tasks between different processors by using 

program-driven flags or codes to indicate program status. This 

hardware and software information on each processor is updated every 

4 usec in each processor's interface through a special status bus, 

which is part of the interprocessor communications bus.   
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The hardware for a distributed processing system for laboratory 

instrument control has been described earlier8. This hardware allows 

control systems to be assembled easily and provides communication and 

control pathways among several processors in a tightly-coupled 

distributed processing system. In order to utilize these capabilities 

effectively, a software environment had to be created which could 

effectively develop real-time research instrument control 

applications.  

SOFTWARE SELECTION CONSIDERATIONS  

 

The software developed to operate with this hardware needed to 

be as well suited for operation in a single processor environment as 

in a distributed processing environment. Since the hardware provides 

an easy path for upgrading to a distributed processing system, the 

software selected also needed to be able to make the transition 

easily. This constrained our software development to systems that can 

operate effectively in a small single processor environment as well 

as a larger multiple processor distributed environment. It is also 

important that programming language features and structure should be 

such that transferring a task to a separate processor would not 

require extensive recoding of existing programs.  

In addition to its suitability for operation in a distributed 

processing system, the software system should be adaptable to 

instrument control applications. Real-time instrument control often 

involves the need to control many specialized interfaces very rapidly. 
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The ability to interact directly with these specialized interfaces 

and the speed of execution of programs are important considerations. 

In a research laboratory, experiment design is constantly evolving so 

that it is important that the control software for an instrument be 

able to be reconfigured easily to meet new experimental demands.  

Another goal for our software system was that it provides the 

user with the ability to develop and test programs destined for the 

slave processors, load programs into the slaves, and provide methods 

of accessing the slave processors for debugging purposes. The software 

environments of the master and slave processors should be as similar 

as possible, so that programs may be tested on the master processor, 

where the user can readily interact with the program, prior to being 

loaded into a slave processor.  

In a few cases, groups have endeavored to develop from scratch, 

languages and operating systems designed specifically for distributed 

processing applications9,10. This approach was viewed as too costly 

and time consuming an undertaking for a scientific laboratory. 

Instead, only currently available languages and operating systems 

were considered and evaluated for their suitability and adaptability 

to the distributed processing environment. What was needed was a 

language that would operate effectively on small single processor 

systems, but could easily be enhanced to operate in a distributed 

processing system.  
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SELECTION OF THE FORTH LANGUAGE SYSTEM  

 

The high-level programming language FORTH was chosen as the 

basis for this system11,12,13. Although FORTH is not a widely used 

language, its popularity has increased steadily since its inception. 

Originally developed in 1968 to control a radio telescope at the 

National Radio Astronomy Observatory, FORTH is one of the few 

languages developed for small computer systems with control 

applications in mind14. Implementations of FORTH are now available for 

nearly all popular microprocessor and minicomputer systems. Some of 

the implementations include such advanced features as multi-tasking15 

and floating point processor support16.  

A FORTH program, or "word", consists of a series of previously 

defined words. These "words" are stored with their definitions in a 

"dictionary"; definitions for new words are merely lists of previously 

defined words. When executed, each word (program) performs a function 

that can be as simple as addition or as complex as plotting an entire 

graph of acquired data. Even a novice user can write programs (new 

words) by merely concatenating existing high-level words. All 

previously defined words, from assembly language to the highest level 

can be used in any given program. When executed directly, each word 

acts like a separate program. When used as a command in another 

program, it is like a subroutine. A typical FORTH system has several 

hundred words in the "vocabulary" of the core system. The modularity 

of FORTH words is similar to that of distributed processing systems. 
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Simple modules (or words) can be readily combined into complex modules 

that can be combined into even more complex modules.  

An unusual feature of FORTH is the use of a push-down stack to 

pass parameters between words when they are acting as subroutines in 

a larger program. A push-down stack acts as a Last-In-First-Out (LIFO) 

buffer; items placed on the stack are removed in reverse order. FORTH 

uses this parameter stack to pass values between both high level and 

assembly language routines. Thus, the interface to an assembly 

language routine is no different from that to a high level FORTH 

routine.  

It's extensibility, the ability to add new commands to the 

language, is one of the most powerful features of FORTH. It is 

generally recognized that high-level languages aid in program 

development. But, in order to be of significant aid to a programmer, 

a language must contain those high-level functions that are needed 

for the given application. FORTRAN is an example of a high-level 

language well suited for numeric processing. FORTRAN, which stands 

for formula translation, was designed to make computational 

programming easier. Most control applications do not need a great 

deal of computation. Instead, they need many specialized input/output 

(I/O) functions and the ability to respond rapidly to real-time 

events. When FORTRAN is used to program control applications, the 

special I/O functions often end up being coded as assembly language 

subroutines. The result is that most of the actual control software 

is not written in a high-level language. When developing control 
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application software, as in all projects, it is important for the 

tool to fit the job. Most of the major programming languages available 

today were originally designed to run on large computer systems and 

solve numeric processing or data management problems. These more 

traditional programming tools can be applied to control systems, but 

this is like trying to use a pickaxe to drive a nail, neither the 

scale nor the function are quite right for the job.  

FORTH can be the basis for the development of high-level 

languages which are specific for each application. In FORTH 

programming, words build on each other, each new word becoming a 

higher and higher level of operation. The end result is a high-level 

language that is specific to the application at hand. As programs for 

a given level of operation are achieved, these become the "high-level" 

words for the next level of program capability. This makes programming 

that application on any level very efficient. Figure 4.1 is a listing 

of a short FORTH program that illustrates how this comes about. The 

application to be controlled is a stepper motor that advances 0.25 

degrees each time memory location 10 is accessed. Line 0 is just a 

comment line to indicate these routines are for the stepper motor. 

Line 2 defines a new word STEP that fetches (@) the value from location 

10 and then discards (DROP) it. This causes the stepper motor to 

advance 0.25 degrees. The word STEPS, defined on line 4, pulses the 

motor n times, where n is the number on top-of-the-stack (TOS). This 

is done by using the new word STEP and the standard FORTH words DO 

and LOOP which create a loop that goes from 0 to n, thus repeating 

STEP n times. The final word, DEGREES, advances the stepper motor a  
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0 ( STEPPER MOTOR ROUTINES ) 

1 

2 : STEP  10 @ DROP ; 

3 

4 : STEPS  0 DO  STEP  LOOP ; 

5 

6 : DEGREES  4 *  STEPS ; 

7 

8 : DEMO 360 0 DO ACQUIRE CR . 10 DEGREES 10 +LOOP ; 

 

 

Figure 4.1 FORTH programming examples illustrating how words build 

into more and more powerful commands. 
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given number of degrees. It takes the number on TOS as the number of 

degrees to move and multiplies this by four leaving the result on 

TOS. This provides the number of 0.25 degree steps desired which the 

word STEPS then uses to advance the stepper motor. This new word 

DEGREES can be used to create a simple data acquisition experiment 

that acquires and displays a data point for every 10 degrees of 

stepper motor rotation. Line 8 in Figure 4.1 defines the word DEMO 

that performs this experiment. A loop is created with the DO and +LOOP 

words that will go from 0 to 360 by steps of 10. The user written 

word ACQUIRE acquires one data point and returns it on top of the 

stack. This value is displayed on a new line with the "CR" and "." 

commands.  

FORTH is a very compact and powerful language system. A basic 

FORTH system which contains the FORTH compiler, an editor, an 

assembler, disk accessing functions and terminal I/O routines 

typically occupies only 8 Kbytes (K=1024) of processor memory. For 

applications not requiring all of the above features, the FORTH kernel 

can be reduced to under 1 Kbyte. The small memory requirement of this 

language system makes it ideal for small microcomputer systems such 

as dedicated slave processors.  

In a standard configuration, the FORTH language system 

incorporates a high-level language, editor, assembler, and operating 

system functions in an integrated package. It can be a stand-alone 

system that does not require the use of other software packages or an 

additional operating system to function. All functions of the editor, 
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assembler, operating system and high-level language are available to 

the user at all times; there is no need to invoke a separate editor 

to edit text. An edit command can be issued at any time by the user 

from a terminal or by a program while it is running; FORTH makes no 

distinction between the two operations. The major functions of high-

level language, editor, and assembler all follow the same rules of 

form and syntax which makes the system internally consistent and 

easier to use than non-integrated systems.  

FORTH allows the user to access memory and input/output (I/O) 

ports on peripheral devices directly. There is no operating system 

standing guard (or interfering), between the user and the system 

hardware. Many I/O tasks can be taken care of in high-level FORTH. In 

addition, memory and I/O ports can be accessed readily from a 

terminal, greatly simplifying the testing and debugging of hardware 

interfaces.  

Typically, programs written in FORTH execute 30-50% as fast as 

their assembly language counterparts. This is much faster than 

conventional interpretive languages such as BASIC that execute 

programs hundreds of times slower than assembly language. The speed 

of FORTH, its ability to interact directly with the processor and its 

peripheral devices allow much more efficient use of machine resources 

than many compiler language systems such as FORTRAN and PASCAL.  

Availability of source code for the language was also an 

important consideration since some modification would be necessary to 

adapt the language to support interprocessor and intertask 
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communication. Source code for FORTH is readily available for most 

popular microprocessors from a number of vendors. Two of the sources 

are the Forth Interest Group (FIG) and FORTH Inc. of Hermosa Beach, 

CA. The Forth Interest Group offers source code for FORTH 

implementations on a variety of processors for a nominal cost. 

However, the source code available from FIG has a number of drawbacks 

for this application. The principal drawback of the FIG 

implementations is that the basic FORTH system is written in 

conventional assembly language and requires a separate assembler to 

generate a FORTH system. Unlike the FIG implementation, the source 

code for the polyFORTH system from FORTH Inc. was written in FORTH 

and includes a target compiler that allows one FORTH system to 

generate a new FORTH system. An additional feature of the polyFORTH 

system that make it attractive is support of multitasking. Although 

the polyFORTH system is quite a bit more expensive than the FIG 

implementations, the performance, target compiler, training support, 

and other advanced features make it well worth the expense in this 

application.  

ADAPTING FORTH TO A DISTRIBUTED ENVIRONMENT  

 

The basic FORTH system which normally operates in a single 

processor environment had to be expanded to handle the interprocessor 

tasks of block data transfer, parameter passing, and task assignment. 

This involved additions to the FORTH system running on the master 

processor and development of modified FORTH system that would operate 
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within the slave processors. It was also necessary to develop a method 

of compiling the modified FORTH system and loading it into the slave 

processors.  

Compilation of Slave Processor Software  

The first step in adapting FORTH to a distributed processor 

environment involved modifications to the polyFORTH target compiler 

that is executed on the master processor. Several interprocessor 

memory access words were developed that utilize the direct memory 

transfer (DMT) hardware to transfer data between the memory of 

different processors in the system. These words, which are described 

in Table 4.1, form the basis for the transfer of large blocks of 

information between processors. Their use follows the sequence: select 

a slave processor with the #SLAVE command, then transfer data between 

the master's parameter stack and the selected slave's memory. Two 

slave processor control words, RESET and HLD, were developed. These 

words utilize the control signals provided by the command transfer 

hardware to reset a selected processor or put a processor into a HOLD 

state, preventing any program execution. These interprocessor control 

and access words were used to create a modified version of the target 

compiler that directly downloads the code into the desired slave 

processor instead of writing the compiled code to the disk.  

There are several advantages to having a compiler that directly 

downloads code into the target processor. One advantage is that the 

compiler can initialize variables and tables in the slave processor 

during the compilation process. This eliminates the need for special 
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Table 4.1 Interprocessor Memory Access Words 

 

SLAVE - select the slave whose number is on top of the stack 

(TOS) for access by the interprocessor memory operations. 

I@ - Fetches a 16-bit value from the address specified by the 

master's TOS in the slave selected by #SLAVE to the master's 

stack. 

! - Stores the second value on the master's stack at the address 

on top of the stack in the slave previously selected with #SLAVE. 

This operation transfers a 16-bit value. 

IC@ - Fetches an 8-bit value from the address specified by the 

master's TOS in the slave selected by #SLAVE to the master's 

stack. I! - Stores the low-order byte of second value on the 

master's stack at the address on top of the stack in the slave 

previously selected with #SLAVE. 

SLAVE - Selects the source and destination processors for the 

IMOVE function. The TOS value is the destination processor 

number and the second stack value is the source processor number. 

IMOVE - Transfers n bytes from a source address in the source 

processor to a destination address in the destination processor 

selected by the >SLAVE command. Usage: source add, dest add, 

number bytes IMOVE. 
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slave initialization routines which take up memory and are only used 

once. The devices interfaced to the slaves are all memory-mapped; 

thus, the compiler can also be used to initialize all of them 

appropriately. Since the compiler interprets code from the disk, the 

entire specialized initialization procedure may reside on the disk 

rather than occupy any system memory.  

For the master processor to instruct a slave processor to execute 

a selected routine, the master processor should have some knowledge 

of what routines are available in a given slave. To accomplish this, 

a word was added to the compiler which records information about 

selected slave commands into a Slave Command Access Table (SCAT). 

This new word is called COMMAND and is a FORTH "immediate" word. This 

type of word is executed at compilation time instead of being compiled 

and is thus useful in adding new functions to the compiler. When it 

is executed, COMMAND records into the slave's SCAT the first three 

characters of the name, the length of the name, and the code field 

address of the last word compiled into the slave. This information is 

later used to direct the execution of a task in a slave processor.  

DIRECTING SLAVE PROCESSORS  

 

The source code of the basic FORTH system to be used in a slave 

processor had to be modified so that the slave processor can receive 

instructions from the command FIFOs. The code that normally interprets 

commands and data from a terminal was replaced with new code which 

performs the same function using the command FIFOs. The result is a 
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slave interpreter that operates in the following manner: using the 

command buffer hardware, the slave monitors the condition of its 

command FIFO. When the FIFO becomes not empty, the high 8 bits of the 

24-bit value in the FIFO are read. A value of one indicates that an 

immediate control operation using the high four bits was executed. In 

this case the lower 16 bits are discarded. If the value is two, this 

indicates that the lower 16 bits contain the code field address of a 

FORTH word to execute. Control is then transferred to the routine at 

this address. When execution is completed, control will return to the 

command FIFO interpreter. A value of three in the high byte of the 

command FIFO signals that the lower 16 bits are data. This value is 

then transferred to the slave's parameter stack. This method of moving 

numeric data to the stack and initiating the execution of a word 

appears to the rest of the FORTH system to be identical to interpreting 

text from a terminal. This new command interpreter was installed in 

such a manner as to preserve the multitasking capabilities of the 

polyFORTH system. Thus, a slave can be running a background task such 

as an oscilloscope display and still be able to act on new commands 

sent to it through the command buffers.  

The slave processors do not possess terminals or disk drives; 

thus, the support code for these devices is not normally down-loaded 

into a slave. This reduces the basic FORTH slave system to 

approximately 2 Kbytes. However, for debugging purposes, terminal 

support software can be loaded into a slave processor to allow a 

programmer to interact with it directly. Normally the user can 

directly interact with only the master processor. Since the slave 
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interpreter operation mimics normal operation from a terminal, a 

programmer may test a routine on the master and then, when it is down-

loaded into a slave, he or she can be confident it will behave in the 

same manner.  

MASTER PROCESSOR FORTH EXTENSIONS  

 

To allow programs running on the master to pass data and commands 

to the various slave processors, several new words were defined for 

the master processor FORTH system. The first of these follows the 

form nPUSH, which pushes the value at the top of the master processor's 

stack to the top of the nth slave processor's parameter stack. This 

becomes the primary method of parameter passing from the master to 

the slave processors. The second type of word developed was designed 

to ease access of variables and arrays in a slave processor from the 

master processor. It follows the form nLABEL and is used to define a 

new word on the master processor that when executed selects the 

appropriate slave with the #SLAVE command and leaves the address of 

a variable in the slave on the master's stack. The execution of words 

defined by this command prepares the master processor for use of one 

of the interprocessor memory access words described in Table 4.1. The 

third major type of word added follows the form SLn, and allows 

commands to be passed to a slave in the form of addresses of FORTH 

words to execute. When executed, a word of this form looks up the 

code field address for the word that follows it in the Slave Command 

Access Table for slave n. If the look-up is successful, the address 
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is transmitted to slave n's FIFO as a command to be executed. The SLn 

and nPUSH commands use the status hardware to determine if a slaves 

FIFO is full or not. If the FIFO is full the command passes control 

to the next task in the multitasking loop. When control is returned 

to the command it checks the FIFO status again. this process is 

repeated until data can be transferred to the slave's FIFO.  

A brief example of how some of these commands are used is 

presented in Figure 4.2. In the code for slave one the word SQUARE is 

defined. It squares the number on top of its stack. After the 

definition of SQUARE the word COMMAND appears that causes the compiler 

to make an entry for SQUARE in the SCAT for slave one. Similarly the 

code for slave two contains the definition of the word CUBE. On the 

master processor the word POWERS is defined and it behaves as follows: 

first it duplicates the number on the top of the stack, then it 

transfers that number to the stack of slave one and to the stack of 

slave two with the 1PUSH and 2PUSH commands. Then the SL1 command is 

used to direct slave one to execute the SQUARE function while the SL2 

command directs slave two to execute the CUBE function. 
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SLAVE 1: 

     : SQUARE  DUP * ;  COMMAND 

SLAVE 2: 

     : CUBE  DUP DUP * * ;   COMMAND 

MASTER: 

     : POWERS DUP 1PUSH 2PUSH  SL1 SQUARE  SL2 CUBE ; 

 

 

Figure 4.2 Sample Multiprocessor Program 

  



52 
 

 
 

  

RESULTS AND CONCLUSIONS  

 

Three of the major interprocessor tasks, block data transfer, 

parameter passing, and task assignment, can easily be accomplished by 

the use of the new words added to the master processor's FORTH 

vocabulary. Tables 4.1 and 4.2 summarize the new FORTH commands that 

a user needs to learn to develop programs to run in a distributed 

environment. Block data transfers can be readily programmed utilizing 

the LABEL commands and the interprocessor memory access words 

described in Table 4.1. The passing of parameters from the master to 

the slaves is accomplished by the use of the PUSH commands. Assignment 

of tasks to the slave processors is made simple by the use of the SL 

commands and the ability to refer to the slave tasks by name.  

The use of this type of software system is not limited to the 

dedicated hardware developed in our laboratory. This software approach 

could be implemented on any multiprocessor system with shared memory. 

It would require the development of additional software to emulate 

the various communications modes implemented in hardware. The 

specialized communications hardware developed as part of this project 

offloads some of the burden from the software and offers some time 

savings, which, when trying to accomplish a great deal of real time 

instrument control, can be vital.  
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Table 4.2 User Extensions to FORTH and the Target for the master 

processor 

 

COMMAND - A directive to the target compiler to record 

information of the last word compiled into the slave command 

access table. 

1PUSH,2PUSH,3PUSH - Transfer the TOS value from the master's 

parameter stack to the specified slave's parameter stack. 

SL1,SL2,SL3 - Direct the specified slave to execute the word 

whose name follows the SLn command. Example: SL1 + would cause 

slave one to perform an addition. 

1LABEL,2LABEL,3LABEL - Usage: 1LABEL slave-name master-name. 

Creates a word in the master's dictionary (master-name) that 

when executed selects the appropriate slave number for 

interprocessor memory access and leaves the address of the 

parameter field of slave-name on the master's stack. 

HLD - Causes the slave processor whose number is on TOS to be 

put in a hold state, preventing program execution. 

RESET - Performs a hardware reset of the slave processor whose 

number is on TOS. 
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The primary goal of this effort was to develop a programming 

environment for a distributed processing system that was simple and 

easy to use. The use of FORTH for program development on both the 

master and the slave processors makes the system internally consistent 

and easy to use once the fundamentals of FORTH are mastered. Although 

a moderate amount of sophisticated systems level programming was 

needed to develop this system, it is simple and straight forward to 

use. This system has been used to implement a four-processor system 

to control a triple quadrupole mass spectrometer. Use of this system 

demonstrates: the speed of programming, use by novices to design 

automated experiments, speed of execution and gains of parallel 

processing, completely modular software that is non-interactive with 

parallel tasks except where it should be.  
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Advances in modern computing technology have had a dramatic 

impact on the analytical research laboratory in recent years17, 18,19. 

The introduction of minicomputer systems made it possible to bring 

computing facilities into the laboratory where the scientist could 

utilize them directly. Many of the early computer systems performed 

mainly data acquisition and data reduction functions. As the cost of 

laboratory computer facilities decreased while their capabilities 

increased, laboratory computer systems were given more 

responsibilities. Computers systems were interfaced more intimately 

to instruments in order to perform control operations such as scan 

generation and temperature programming in addition to data acquisition 

and data reduction. Advances in storage technology have allowed 

greater amounts of data as well as reference libraries to be stored 

in laboratory computer systems. These systems began to be known as 

"data systems", and as they were paired up with instruments, we began 

to see terms such as MS/DS appearing referring to the combination of 

a mass spectrometer and a data system."  

When the functions of a conventional data system are examined, 

it can be seen that they can be classified into two general groups; 

first the real time functions which are involved in instrument control 

and data acquisition and secondly, the non-real time functions such 

as data analysis, reference library searching, archival data storage, 

and tabulation and presentation of results. These two groups have 

very different requirements in both CPU response time and types of 

resources needed. The control group requires a fast response time and 

dedicated interfaces to the instrument while the data analysis group 
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requires large mass storage devices (e.g. disk and tape drives), 

graphics display devices, and facilities for hard copy generation 

(e.g. printers and plotters) and can tolerate a moderate CPU response 

time. Examining these different requirements suggests that the needs 

of a data system might be best met by two computers operating in a 

hierarchical manner20,21.  

The real time functions can be performed by an intelligent 

instrument control system which can be dedicated to the particular 

instrument and which will handle all of the instrument control and 

data acquisition functions. The data analysis functions can be 

performed by a second system which is configured to handle these tasks 

in an efficient manner. This scheme allows the data analysis computer 

to be operated as a multi-user system which can analyze the data from 

more than one instrument. The cost and capabilities of expensive 

peripherals can then be shared by more than instrument or function. 

This distribution of data system functions also allows analysis of 

stored data and acquisition of new data simultaneously thus maximizing 

the use of an expensive instrument. In our laboratory we have 

implemented such a hierarchical system using microcomputers for the 

intelligent control systems and a minicomputer for the data analysis 

system.  

Modern microprocessors are ideally suited for dedicated control 

systems since they offer high performance at a low cost. A further 

advantage of these microprocessors is that they are supported by a 

large variety of inexpensive LSI (large scale integration) peripherals 
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such as serial ports, parallel ports, counter/timers, and 

microprocessor-compatible signal converters. The availability of 

these low-cost interface devices is important since it allows a much 

larger number of instrument parameters to be controlled at a 

reasonable cost.  The programmable nature of many of these devices is 

also an advantage since it allow    a custom interface to the 

instrument to be easily implemented from standard devices.  

Data analysis systems need to be able to support large amounts 

of storage for both data and reference libraries. Support for 

languages such as FORTRAN and PASCAL for data manipulation and number 

crunching applications must be provided as well as multiuser, 

multitasking operating systems. Graphics capabilities are often added 

to these systems to aid in data display and interactive data analysis. 

Relatively expensive features such as large storage devices, floating 

point processors, and graphic displays can be most effectively 

utilized in a multiuser environment, where several users can take 

advantage of these capabilities at one time. Commercial minicomputer 

systems such as the PDP-11 series from Digital Equipment Corp.22 with 

the RSX-11M operating system are well suited for such applications. 

Figure 5.1 illustrates the hierarchical system of computing facilities 

in use in our laboratory. Microprocessor based systems are used to 

control instruments and acquire data. The data is then passed up to 

a PDP-11 computer system for data reduction, display and archival 

storage23. This computer is also part of a department-wide distributed 

network which allows access to even a greater variety of resources if 

they are needed. 
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Figure 5.1 Distributed Intelligence 
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This separation of instrument control and data analysis tasks 

frees each of the computer systems to provide enhanced capability. 

Once freed of real-time processing constraints, the data analysis 

system can be expanded to provide more sophisticated data reduction 

and retrieval functions. Expert systems utilizing artificial 

intelligence concepts can be developed. The control system can also 

grow in sophistication and take on even more aspects of instrument 

control. Ideally these systems would control as many instrument 

parameters as possible and record these parameters along with the 

acquired data to create a complete experimental record. This paper 

will focus on the control system part of the data system and show how 

substantial advances in control capability and operator assistance 

can be achieved.  

DESIRABLE CONTROL SYSTEM FEATURES  

 

As control system tasks evolve from simple data acquisition to 

full instrument control, an expanded number of capabilities and 

features are needed to ensure that the operator and an instrument can 

effectively interact to produce the best possible results from the 

experiment. A number of these features are listed in Table 5.1. An 

example of the desirability of software control of the instrument 

over simple computer starting or monitoring of existing control 

hardware is seen in the generation of a scan control signal. In the 

case of computer-triggered scan generator, the computer can only 

control the start of a scan whereas software generation of the 
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Table 5.1 Desirable Attributes for a Control System 

 

• Maximum flexibility through programmed software control of the 

instrument 

• Appropriate and friendly user interface 

• Aids in optimization of instrument parameters 

• Adaptable to changing experimental needs 

• User programmable for experimental procedures 
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complete scan signal allows simple linear scans and also logrithmic, 

square-law, step, recursive, or any other function. Efficiency might 

be improved by scanning at a fast rate until a signal peak appears 

then backing up and scanning slowly over the peak. Total generation 

of a scan control signal by the control system allows any scanning 

algorithm to be implemented in the future without any modifications 

to the hardware.  

The existence of an appropriate and friendly user interface to 

the control system is very important since an awkward or difficult 

user interface discourages operator interaction with the system and 

leads to higher error rates and increased frustration. A control 

system may employ a number of devices to interface with the operator 

such as keypads, terminals, or touch panels. The choice of device 

depends greatly of the use of the particular system.  Other factors 

which contribute to a friendly user interface are the use of simple, 

yet descriptive commands and the provision for more than one method 

of modifying an instrument parameter. For example, the system might 

provide a simple command, a video editor, and a menu, any of which 

could change the parameter of interest. This would allow different 

operators with a wide range of expertise to effectively operate the 

instrument. Another feature that helps operator confidence is checking 

for inappropriate commands and issuing descriptive warning and error 

messages.  

An important function of the control system is assistance in or 

the automation of the optimization of the instrument parameters.  The 
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control system can perform this function on a number of levels 

depending of the needs of the experiment and the ability of the 

operator.  The existence of tuning aids which allow the operator to 

interactively optimize the instrument are very helpful when the 

instrument is performing non-routine experiments and/or when the 

optimum tuning criteria are not clearly definable. When the optimum 

or standard performance can be clearly defined by the operator the 

control system could perform an automatic tuning operation. Another 

possible feature of an advanced control system is the dynamic 

optimization of the instrument during data collection using a 

predefined set of goals specified by the operator.  

A system which allows for changing experimental needs is useful 

since this allows the system to expand if new ancillary equipment is 

added to the instrument or if the instrument itself is modified. By 

allowing such modifications to the control system, the frustration of 

using an instrument which is only partially under computer control is 

avoided. If the hardware of the computer system is modular, new 

interfaces can be easily added to the system. Equally important is 

that the software for the system should be open to modification so 

new interfaces can be integrated into the system.  

A useful feature for a control system is the ability to define 

new experimental procedures so that routine analyses can be performed 

easily and with few errors.  It is desirable if the new experiments 

can be defined by using the normal commands for the instrument instead 

of a separate command language since this helps minimize the amount 
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of information that must be learned. As instruments become more 

complex and their control systems become more sophisticated the amount 

of computing power that is needed increases rapidly. As developed in 

the next section, one possible way to achieve this increase in 

computing power is to use several smaller computers connected together 

as a distributed processing system instead of one bigger or faster 

computer.  

DISTRIBUTED PROCESSING SYSTEMS  

 

Distributed processing systems offer several advantages over 

single processor systems24,25. Some of these advantages are listed in 

table 5.2 and can be grouped in three classes: faster execution, 

independent task execution, and modularity of hardware and software26. 

Systems utilizing more than one processor typically fall into one of 

two classes, distributed processing systems and multiprocessing 

systems. In a distributed processing system the work load is spread 

over several processors by assigning a fixed set of tasks to each 

processor. The processors are not necessarily identical; each may 

incorporate enhancements to enable them to perform their allotted 

tasks. These enhancements may include special interfaces, additional 

memory or numeric coprocessors. This is called static load sharing, 

where assignment of a task to an individual processor occurs during 

the design phase. In a multiprocessing system the work load is spread 

over several "equal" processors by assigning tasks to any unoccupied 
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Table 5.2 Advantages of Distributed Processing Systems 

 

Faster Execution 

• Parallel execution 

• Less time spent in "overhead" 

• Simpler addition of hardware controllers and processors 

 

Independent Task Execution 

• Non-interference of tasks 

• Elimination of task interleaving programs 

• Elimination of priority assignment programs 

• Simpler task program modification 

 

Modularity of Hardware and Software 

• Consolidation of related tasks 

• Simpler extension of instrument capability 

• Simpler debugging and troubleshooting 

  

  



68 
 

 
 

processors. This is called dynamic load sharing, where assignment of 

a task to a processor occurs during program execution.  

Systems utilizing more than one processor can be loosely or 

tightly coupled27These terms refer to the method of communication the 

processors use to pass information. Loosely coupled systems use shared 

peripherials to pass messages, while tightly-coupled systems use 

shared memory to pass messages28 Multiple processors systems can be 

interconnected in a variety of ways29,30,31. Several of these 

interaction schemes are shown in Figure 5.2. In our laboratory we 

chose to implement a distributed processing system utilizing a global 

bus structure as the principal means of interprocessor connection32. 

The bus structure developed can support one master processor and up 

to seven slave processors. The master processor is equipped with 

interfaces to interact with the user and to direct the operations of 

the slave processors. The slave processors possess the interfaces to 

the instrument, but cannot interact with the user directly.  

PARTITIONING OF TASKS  

 

The partitioning of tasks into separate processors takes on a 

variety forms depending on the function being implemented and the 

criteria used to separate tasks. Three of the major forms of task 

partitioning are horizontal partitioning, vertical partitioning and 

partitioning based on data access33. Two tasks can be horizontally 

partitioned if they can be executed without regard to order or can be 

executed concurrently. Vertical partitioning involves the separation 
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Figure 5.2 Multiprocessor Topologies 
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of tasks that have predecessor-successor relationships. These 

relationships may arise from data dependency or control flow 

considerations. Partitioning based on data access separates tasks by 

what data they operate on. Temporal order, control and direction of 

data flow are not considered. Since most tasks involved in real-time 

instrument control have some form of predecessor-successor 

relationship, efforts were directed toward developing a distributed 

processing system utilizing vertical task partitioning. This required 

the development of efficient communication links between the 

processors.  

Vertical partitions in real-time systems can be classified into 

three major types according to transform concepts proposed by Yourdon 

and Constantine34: afferent, central, and efferent. In afferent data 

flow an input stream is prepared for internal processing. This 

involves such actions as acquiring data points, signal processing 

(averaging), formatting and conversions necessary to transform the 

data into a usable form. Efferent data flow involves the preparation 

of internally computed data for output transmission. Efferent 

transforms perform the conversions, scaling, and formatting necessary 

to present data to the output interface (display, DAC, printer, etc.) 

in the required form. Central transforms are those between the 

afferent and efferent data types. These central transforms are where 

the main data processing, such as peak finding, of the system take 

place. The afferent/central/efferent partitions may indicate classes 

of tasks that can be separated into different processors.  
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MICROPROCESSOR SYSTEM HARDWARE  

 

A system of modular microcomputer components was developed to 

aid the construction of laboratory control systems35. In this system 

each function (CPU, memory, ADC, parallel interface, etc.) is 

implemented as a separate module. These modules are interconnected by 

mounting them on a "motherboard". Several motherboards can be 

connected together by plugging them into a backplane module. The 

structural relationships of these system elements is shown in Figure 

5.3. To date, more than 20 function modules have been developed for 

this system, including two CPU modules (Intel 8085, 808836), three 

types of DACs, parallel and serial interfaces, an analog multiplexer, 

a programmable gain amplifier, and a 12-bit ADC. Figure 5.3 contains 

all the essential modules for a small control system.  

Several advantages arise from the use of such a system to 

implement the necessary computer hardware for a control application. 

One is that a system can be implemented with only the needed functions. 

There are no multifunction boards that require the space and price of 

the functions when only one of the functions is needed. A second 

advantage of a flexible modular system is the ease of expansion and 

upgrading. Experimental demands in the research environment are 

constantly changing. The ability to incorporate additional modules to 

extend areas of the instrument operation that are under computer 

control is important. The capabilities of an existing control system 

can be expanded by the addition of modules which add more memory, 
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Figure 5.3 Modular Hardware System 
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graphics display capabilities, or an advanced numeric processor. 

Common functions such as "chip-select" logic can be implemented on 

one module for use by all the other modules on each motherboard. This 

reduces the board size and the complexity of other modules. By 

minimizing the complexity of these modules custom interfaces for 

special applications may easily be developed. This hardware system 

has been utilized to implement an number of small control systems in 

our laboratory37,38,39.  

INTERPROCESSOR HARDWARE  

 

Additional modules were developed for this system to allow 

processors to be linked together to form a distributed processing 

system (Figure 5.4). These modules implement three paths of 

communication which are used to support the interprocessor 

communication modes outlined in Table 5.3. The first interprocessor 

module (Figure 5.4A) supports a direct memory transfer communications 

path. This hardware allows transfers between the master processor and 

memory on any slave. This is accomplished using bus switching hardware 

which places any slave processor involved in a transfer into a hold 

state and then connects the slave processor's address and data bus to 

an interprocessor communications bus. When a transfer is completed, 

the slave processor's bus is released, and program execution in the 

slave is resumed. This hardware is used to implement the block 

transfer of data between processors and to load software into the 

slave processors at system startup. 
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Figure 5.4 Distributed Processing Modules 
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Table 5.3 Modes and Paths of Interprocessor Communication 

 

Modes of Interprocessor Communication 

• Block data transfer 

• Task assignment 

• Parameter transfer 

• Task coordination 

Hardware Paths for Interprocessor Communication 

• Direct memory transfer 

• Command transfer 

• Status transfer 
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The second interprocessor communications path supported in 

hardware is called the command transfer path (Figure 5.4B). This path 

is implemented as a set of first-in-first-out (FIFO) buffers for each 

slave processor in the system. Each FIFO buffer is 32 elements deep 

and is referred to as a command buffer. The master can write data 

into any slave's FIFO buffer, which can then be read out and 

interpreted by the slave. In addition to the command FIFO buffer this 

module provides control lines that allow the master processor to 

reset, hold or interrupt a slave processor. The task assignment and 

parameter passing functions needed for interprocessor communication 

are implemented utilizing this hardware module.  

The third interprocessor module provides a communications path 

called the status transfer (Figure 5.4C). Each processor in the system 

(maximum of eight) has one of these modules which contains 16 bytes 

of dual-port memory. Two bytes are assigned to each processor: one 

for hardware status and one for user definable software status. Each 

processor's hardware status byte includes such information as command 

buffer full or empty, and processor halted. The value of the software 

status byte can be written by application routines to indicate what 

function is under execution or when a task has been completed. These 

values are updated every 4 usec through a portion of the 

interprocessor communications bus called the status bus, so that any 

change of status information in the system is known by all processors 

within 4 usec. This module provides the principal means of 

interprocessor task coordination.  
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SOFTWARE  

 

Once this efficient modular hardware system was developed, it 

was necessary to develop a software operating environment that 

complements the capabilities of the hardware. The attributes of a 

good laboratory language have been discussed in some detail in 

references 40 and41. In our laboratory we have chosen to use the high-

level programming language FORTH42,43 ,44 to develop instrument control 

applications. FORTH implements many of the attributes of a good 

laboratory language. Among FORTH's more important features are its 

small size, its ability to directly access machine resources, and its 

extensibility. A standard FORTH system containing the FORTH compiler, 

an editor, an assembler, disk access functions and terminal I/O 

routines typically occupies only 8 Kbytes (K=1024) of processor 

memory. For applications that do not require all of the above 

functions, the FORTH kernel can be reduced to under 1 Kbyte. This 

small size makes FORTH well suited for small control system where 

FORTH can be programmed into read-only memory (ROM) so that it is 

available upon system powerup. The standard FORTH system implements 

all of the functions necessary for program development. Thus, each 

FORTH based instrument can be programmed without the use of additional 

software packages such as cross compilers, and without the need for 

a separate development system. FORTH allows the user to access memory 

and input/output (I/O) ports on peripheral devices directly. There is 

no operating system standing guard, or interfering, between the user 

and the system hardware. This is important in instrument control 
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applications where much of the work is interfacing to and operating 

non-standard peripherals. Many I/O tasks can be taken care of in high-

level FORTH. In addition, memory and I/O ports can be directly 

accessed from a terminal, greatly simplifying the testing and 

debugging of hardware interfaces.  

FORTH is an extensible programming language, one to which new 

commands and structures can readily be added. A FORTH program, or 

"word", consists of a series of previously defined words. Each word 

performs a function such as multiplication, fetching data from memory, 

acquisition of a data point or plotting a set of acquired data. When 

executed directly, each word acts like a separate program or function 

of the system. When used in defining a new "word" or program, existing 

words act like subroutines in languages such as FORTRAN. A typical 

FORTH system has several hundred words already defined in it's 

"vocabulary". Programs are easily written, even by novice users, by 

merely concatenating existing words: and in the process, a new, 

higher-level word is added to the vocabulary.  

An unusual feature of FORTH is the use of a push-down stack to 

pass parameters between words. A push-down stack acts as a Last-In-

First-Out (LIFO) buffer; items placed on the stack are removed in 

reverse order. FORTH uses this parameter stack to pass values between 

both high level and assembly language routines. Thus, the interface 

to an assembly language routine is no different than to a high level 

FORTH routine. Whenever a number is entered on a command line it is 

pushed onto the top of the stack.  
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In FORTH programming, words build on each other, each new word 

becomes a higher and higher level of operation. The end result is a 

high-level language that is specific to an application, which makes 

programming that application more efficient. Figure 5.5 is a listing 

of a short FORTH program that illustrates how this comes about. The 

application to be controlled is a stepper motor that advances 0.25 

degrees each time memory location 10 is accessed. Line 0 is just a 

comment line to indicate these routines are for the stepper motor. 

The definition of a word is begun with a ":" followed by the name of 

the new word. The definition of a word is terminated by a ";". Line 

2 defines a new word STEP that fetches (@) the value from location 10 

and then discards it (DROP). This causes the stepper motor to advance 

0.25 degrees. The word STEPS, defined on line 4, pulses the motor n 

times, where n is the number on top-of-the-stack (TOS). This is done 

by using the new word STEP and the standard FORTH words DO and LOOP 

which create a loop that goes from 0 to n, thus repeating STEP n 

times. The final word, DEGREES, advances the stepper motor a given 

number of degrees. It takes the number on TOS as the number of degrees 

to move and multiplies this by four leaving the result on TOS. This 

provides the number of 0.25 degree steps desired which the word STEPS 

then uses to advance the stepper motor. This modularity of software 

complements the modularity of the hardware, where small simple 

components can be readily combined together to perform a complex 

function. 

  



80 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

0 ( STEPPER MOTOR ROUTINES ) 

1 

2 : STEP  10 @ DROP ; 

3 

4 : STEPS  0 DO  STEP  LOOP ; 

5 

6 : DEGREES  4 *  STEPS ; 

 

 

 

Figure 5.5 Sample FORTH Program  
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For operation in the distributed processing environment, a 

modified version of FORTH was developed for operation on the slave 

processors. First the editor, assembler, and disk access functions 

were removed since they would not be needed on the slave processors. 

This reduced the size of the basic system to less than 4 Kbytes. The 

standard command interpreter was then modified to accept commands and 

parameters from the command buffer FIFOs. Extensions were made to the 

FORTH system running on the master processor to allow the master to 

download code into the slave processors, perform interprocessor memory 

transfers and direct the execution of tasks in the various slave 

processors. This yielded an integrated system where all processors 

are programmed in a common language with little deviation from single 

processor implementations of FORTH45.  

CONTROL SYSTEM DESIGN CONSIDERATIONS  

 

One of the first considerations in designing a control system 

is the determination of the useful dynamic range of data that the 

instrument can produce. In many cases the dynamic range of the 

instrument is not limited by noise from the detector or the 

electronics but is limited instead by "chemical noise" in the  system. 

This noise results from the chemical background in the sample being 

analyzed. One method of increasing the dynamic range of the instrument 

is to add more than one dimension of selectivity. An example of this 

is the use of chromatography to separate the sample in time before it 

is analyzed by the instrument. In the triple quadrupole mass 
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spectrometer, there are two stages of selection which results in a 

usable dynamic range on the order of 108. That is, it is possible to 

have a noise level that is eight orders of magnitude below the level 

of maximum usable signal.  

When a gas chromatograph is used with the triple quadrupole mass 

spectrometer, a mass scanning rate of 1000 amu/sec or greater is 

desirable to give adequate resolution of the GC profiles. At these 

scanning speeds analog current measurement techniques are used with 

a resulting dynamic range of from 105 to 106.  This range is limited 

by ion statistics at the low end and detector saturation at the high 

end. Other sample introduction techniques that provide a less 

transient sample allow slower scan rates. At slower scan rates, pulse 

counting techniques can be used to extend the dynamic range to its 

full value of 108. This wide dynamic range must be reflected in the 

number representations and peak finding algorithms so that significant 

data is not lost.  

The triple quadrupole mass spectrometer also provides a 

challenge to the designer of the control system because of the large 

number of parameters that need to be controlled. These devices are 

listed in Table 5.4 along with the simple mnemonic names that have 

been assigned to them. The TQMS instrument is capable of operating in 

three different ionization modes: electron impact ionization, 

positive chemical ionization, and negative chemical ionization. It 

can rapidly change between these different modes under computer 

control. This provides an added level of complexity since the optimum 
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Table 5.4 TQMS devices and their mnemonic names 

 

 

NAME  DEVICE                     NAME  DEVICE 

EV    Electron energy            Q2    Quad 2 DC rod offset 

REP   Repeller                   Q3    Quad 3 DC rod offset 

EIV   EI ion volume              MHV   Multiplier high voltage 

CIV   CI ion volume              M1    Mass selected by quad 1 

EXT   Extractor                  DM1   Quad 1 delta mass 

L1    Ion source lens 1          RS1   Quad 1 resolution 

L2    Ion source lens 2          M2    Mass selected by quad 2 

L3    Ion source lens 3          M3    Mass selected by quad 3 

L4    Interquad lens 1-2         DM3   Quad 3 delta mass 

L5    Interquad lens 2-3         RS3   Quad 3 resolution 

Q1    Quad 1 DC rod offset 
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value of all of the devices may be different for each of the different 

ionization modes and thus the control system must be capable of 

storing the desired device settings for each the mode. To achieve 

optimum performance the value of some of the devices should be changed 

as the mass command is scanned. This tracking of several devices with 

mass increases the demands put on the control system since it 

increases the number of calculations that must be performed in real 

time as the data is acquired.  

Other capabilities that are needed in the control system are the 

ability to view the raw ion signal in real time and the need to 

display the data that the control system has acquired. The display of 

the raw ion signal is very important for proper tuning of the 

instrument. The control system needs to offer a number of aids to the 

operator so that the TQMS instrument can be interactively tuned using 

the judgment of the user to optimize the instrument for the 

experiment. The ability to display the acquired data allows the 

operator to adjust the acquisition parameters so that the data is 

collected properly and also permits the course of an experiment to be 

monitored. Utilities for managing the data that the system acquires 

are also important features of the control system.  

IMPLEMENTATION OF TQMS CONTROL FUNCTIONS  

 

An examination of the tasks involved in controlling a TQMS 

instrument led to the identification of three major groups of 

functions; ion path control, signal acquisition or detection, and 
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signal processing (peak finding)46. These functions correspond to the 

efferent, afferent, and central types of vertical partitions discussed 

earlier. The initial decisions of how to partition functions among 

processors in a distributed system are the most critical in 

determining overall system performance and capabilities. A 

distributed processing system utilizing four Intel 8088 processors 

was implemented to support these partitioning decisions. In this 

system one processor acts as the system master and the other three 

are operated as dedicated slave processors. Figure 5.6 illustrates 

the interconnection of the master to the slave processors and the 

connections of the slave processors to the instrument. The horizontal 

arrows between the slave processors represent the status communication 

hardware which is used to synchronize the slave processors during 

scanning operations. The double-ended arrows connecting the master to 

the various slaves indicates the path of data transfer through which 

the master can directly access the memory in each slave. Finally, 

commands and parameters are transferred from the master to each slave 

through the command buffers depicted as a series of small boxes 

between the master processor and each slave processor in Figure 5.6.  

All of the communication between the instrument and the outside 

world is provided by the master processor. The master processor 

supports a number of devices in order to carry out its role. A CRT 

terminal and keyboard are provided as the primary means of interaction 

between the operator and the instrument. The master processor accepts 

commands from the operator and directs the operation of the slave 

processors to carry out these commands. A printer is provided so that 
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Figure 5.6 TQMS Control System Block Diagram 
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the operator can obtain a permanent record of results and system 

parameters to consult during the course of an experiment. An 8 Mbyte 

Winchester disk is utilized to store data acquired during an 

experimental session. A link to a "host" minicomputer allows data to 

be directly transfer to the "host" upon completion of an experiment. 

An 8-inch floppy disk is provided to allow different operators to 

maintain their own sets of instrument parameter settings and pre-

defined experimental procedures. The master is the most complex 

processor in the system and as a result contains the largest amount 

of memory, a total of 48 Kbytes. A basic FORTH system programmed into 

EPROM (eraseable programable read only memory) occupies 8K bytes of 

this memory space, leaving 40K available for control software and 

data space.  

The ionpath processor performs all of the efferent functions of 

the control system. It contains interfaces to provide all of the 

output signals needed to control the instrument. These interfaces 

consist mainly of digital-to-analog converters to provide control 

voltages and a few bytes of parallel output to control the mode 

selection of the ionizer and quadrupole controllers. All of the DACs 

have 12-bits of resolution and provide a +/- 10 volt output range 

with the exception of the DAC's controlling the mass selection of 

quadrupoles one and three. The mass control DACs have 16-bits of 

resolution and an output range of 0-10 volts. In addition to many 

interfaces, this processor is provided with 32 Kbytes of RAM (random 

access memory) for programs and calibration tables. The software to 
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run the ion path slave is loaded into its memory by the master 

processor.  

One of the main functions of the ionpath slave processor is to 

perform the transformation of information from a value in a given set 

of units to a number to send to a DAC to generate the desired value 

in the instrument. The ion path slave accepts values in experimental 

units (mass, volts, etc.) from the master, performs the necessary 

transformations and outputs the result to the instrument. The master 

is never directly involved in setting instrument parameters and never 

needs to deal with the values in any other terms than volts or mass.  

The second function of the ion path slave is the generation and 

control of the scanning functions. This is a logical task for this 

processor since it has local control over the entire instrument. The 

ion path slave accepts information from the master processor such as: 

type of scan, range to be scanned and mass step increment to use, and 

scanning rate. The slave processor then sets up the specified 

instrument conditions and generates the desired scanning function. 

During the course of the scan the ion path slave coordinates the 

advancement of the scan with the operation of the other slave 

processors. The ionpath slave also signals the completion of the scan 

to all other processors.  

The detection slave processor performs the afferent functions 

of data acquisition and formatting. This processor controls the 

interfaces that convert the analog output of the instrument into a 

digital form. The principal function of this processor is to a acquire 
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a data point. It performs this function by sampling the ion current 

from the instrument, possibly averaging the result to improve the 

signal to noise ratio, and then converting the result to a standard 

numeric format recognized by the other processing elements in the 

system. Currently only analog data conversion is supported, however 

this processor provides the system with the processing power need to 

handle pulse counting hardware when it is installed. The detector 

slave is provided with 16 Kbytes of RAM. However, with the limited 

range of function currently demanded of this processor less than 8K 

bytes are utilized.  

The peak-finding slave processor is the main signal processing 

element in the system. This processor combines positional output from 

the ion path slave with intensity information from the detection 

slave. Various criteria are used to determine the presence and 

position of a peak in the mass spectrum. When a peak is detected this 

processor records the position and intensity of the peak. This 

information is transferred to the master processor when a scan is 

completed. The peak finding slave has no direct connections to the 

instrument. This processor is supplied with 24 Kbytes of memory, of 

which 8 Kbytes are allocated to storage of information detected during 

a scan.  

In addition to illustrating the interconnections in the control 

system, Figure 5.6 illustrates the sequence of commands each processor 

might receive in order to acquire a daughter scan of a parent ion at 

mass 100. The detection slave is passed the parameter 10 along with 
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the AVGS command to set the number of times to average the ion-current 

value to 10. The detection slave is then instructed to prepare for a 

daughter scan. The peak finding slave is passed the parameter 300 

along with the command THRES. This sets the threshold for peak 

detection to 300 counts. This processor is also instructed to prepare 

for a daughter scan. When told to prepare for a daughter scan the 

peak finding and detection slaves look to the ion path slave for 

synchronization during the scan. Finally, the ion path slave is passed 

the parameter 100 along with the MS1 command, which selects the parent 

mass of 100 for the daughter scan. The parameters for the start (mass 

10), end (mass 120), and increment of the scan (0.1 amu) are passed 

to the slave processor prior to issuing the daughter scan command 

DSCAN.  

Figure 5.7 illustrates the synchronization and overlap of tasks 

in the distributed processing system. This figure also illustrates 

the increased throughput that can be achieved by the use of several 

processors in place of a single processor. The data acquisition cycle 

has been divided into five principal tasks; calculation of ionpath 

values, setting the ionpath values, acquisition of a data point, 

format conversions of an acquired data point, and peak finding 

operations. In a single processor system these functions must be 

performed in series. The distributed processing system allows these 

tasks to be overlapped to some extent increasing the system 

throughput.  
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Figure 5.7 Parallel Processing Timing Diagram 
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USER INTERFACE  

 

In order to manage a large number of instrument parameters 

effectively, special attention must be placed on the interface between 

the user and the instrument. This involves consideration of how 

parameters are displayed and modified, how commands are identified, 

and the feedback provided the user. An important area of 

operator/instrument interaction is how the user puts information into 

the system. A wide variety of input options are available today 

including predefined pushbuttons, keyboards, lightpens, voice, 

touchscreens, joysticks and trackballs. One or more of these input 

options may be used in a single system. The choice of input method 

can greatly affect the ease of instrument use.  

When defining system commands, one must attempt to reach a 

compromise between short cryptic command names and long descriptive 

command names. Short names may be easy to input, but they suffer from 

a number of drawbacks. Among these drawbacks are the need for 

extensive memorization by the user, cryptic command lines and easy 

confusion between commands.  Consider an example where the starting 

and ending values of a scan must be set as well as the increment or 

step size to use while scanning. If a two-letter command scheme is 

used the resulting commands might look like SS, SE, and SI, for set 

start, set end, and set increment respectively. The resulting commands 

can hardly be described as descriptive of their function. Long 

descriptive command names can be easy to learn and make command line 
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easy to read. Using the above example, descriptive command names might 

take on the form SET-START, SET-END, and SET-STEP. While these are 

very descriptive of their function, they are too long to be easily 

entered on a keyboard frequently.  

A useful approach to the definition of commands is to partition 

the name into two sections; a general function class and a specific 

function class, then abbreviating only one of these sections to help 

keep the command both short and clear. Two examples of this from the 

implementation of the TQMS control system are a group of parameters 

setting functions and the scanning functions. The parameter setting 

functions are like those outlined in the example above, which are 

used for setting a start, end and step value. In this case the general 

function was the setting of a parameter and the specific function was 

the parameter to be set. The abbreviation "!" was chosen for the 

general setting function yielding the command names !START, !END, and 

!STEP. When the general abbreviation "!" is learned these commands 

are read set-start, set-end and set-step. The second example concerns 

the commands to direct the system to perform one of the five basic 

scan types; a quad one scan, a quad three scan, a parent scan, a 

daughter scan or neutral loss scan. In this case the general function 

"scan" was retained as the descriptive function and the specific type 

of scan was abbreviated to 1, 3, P, D, and N respectively. This 

results in the five scanning commands 1SCAN, 3SCAN, PSCAN, DSCAN, and 

NSCAN.  
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To help the user deal with the large number of parameters to be 

set in a TQMS instrument, interactive screen editors were developed. 

An example of this is the parameter editor PED (Figure 5.8) that 

displays a table of the current settings of all devices in the system 

as well as their start, end and step size scanning parameters. There 

are more than seventy values in this table. To modify any value, it 

is first selected by using cursor control keys on the terminal to 

move a cursor to the desired value. The current cursor position is 

indicated by displaying the selected value in reverse video. Once a 

value is selected, the user may enter a new value at that location by 

merely typing it in from the keyboard. This results in a "what you 

see is what to change" type system, where there is no command structure 

needed to identify the parameter of interest. This approach gives the 

user access to many parameters at one time while making it easy to 

select and modify an individual parameter. The use of such a screen 

editor approach is superior to a menu drive parameter selection and 

modify scheme, since the user can directly modify the parameter of 

interest without first having to go through several levels of menu 

selection.  

To aid the user in instrument setup, tuning, and operation, 

three types of display functions are provided by the control system. 

The simplest is the numerical display of acquired data on the control 

system terminal. A variety of text displays can be called up. A DLIST 

command lists the data from the last scan acquired as a table of 

scanned value (mass, lens voltage, etc.) and ion intensity. The SDIR 

command displays a directory of all the scans taken during an 
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#1 MSU TUNE                                                     MODE: EI 

 

 # DEV CURRENT  START    END   STEP   # DEV CURRENT  START    END   STEP 

 0 EV     70.0    0.0    0.0    0.0   16 M1    219.0   50.0  250.0   0.1 

 1 REP    34.3    0.0    0.0    0.0   17 M2      0.0    0.0    0.0   0.0 

 2 CIV    36.3    0.0    0.0    0.0   18 M3     69.0   20.0   80.0   0.1 

 3 EIV    17.0    0.0    0.0    0.0   19 DM1   -15.1    0.0    0.0   0.0 

 4 EXT     9.2    0.0    0.0    0.0   20 DM3     0.4    0.0    0.0   0.0 

 5 L1    -16.6    0.0    0.0    0.0   21 RS1     5.8    0.0    0.0   0.0 

 6 L2    -23.7    0.0    0.0    0.0   22 RS3   -70.7    0.0    0.0   0.0 

 7 L3    -21.0   50.0  -50.0   -0.2   23 

 8 Q1     -0.6  -20.0   20.0    0.1   24 

 9 L4      1.9 -100.0  100.0    0.5   25 

10 Q2      8.4    0.0    0.0    0.0   26 

11 L5     -8.3 -100.0  100.0    1.0   27 

12 Q3      0.8    0.0    0.0    0.0   28 

13 MHV  2450.0    0.0    0.0    0.0   29 

14                                    30 

15                                    31 

 

 

Figure 5.8 Parameter Editor Display  



96 
 

 
 

experiment, listing the type of scan, the range of the scans, and how 

many data points were recorded. This type of text display provides 

the user with some immediate quantitative feedback during and 

immediately after a set of experiments.  

The graphical display of acquired data is a second means of 

immediate feedback the control system provides for the user. A 

graphics display has been interfaced to the system to allow the 

display of mass spectra and voltage sweeps. The display routines are 

primarily used to produce an immediate visual representation of the 

acquired data. Interactive display functions are not provided, nor 

are extensive formatting capabilities available. These functions are 

more appropriate for the data analysis system. However, it is 

important for a user to be able to view his or her data during the 

course of an experiment in order to evaluate the performance of the 

instrument or determine the course of the experiment.  

A third type of data display is provided to aid in the tuning 

of the instrument. This display utilizes an oscilloscope to display 

the ion current signal to the user in real-time. This allows the user 

to directly observe the effects of changing various parameters. The 

x-axis of the oscilloscope display is controlled by the ion path 

processor using a DAC. The ion path processor also can control the 

gain of the amplifier which supplies the ion current signal to the y-

axis of the oscilloscope. This system allows a flexible tuning aid 

call a split screen display to be developed. The split screen display 

can display between one and five mass windows 5 amu wide on the 
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oscilloscope screen. This provides side by side comparisons between 

peaks that may be widely separated in mass. In addition, the user can 

specify the individual gain to be used in displaying each mass window. 

This allows mass peaks of greatly different intensities to be clearly 

displayed simultaneously. The selection of mass windows to display, 

the scan type to use (quad one, parent, daughter, etc.), and the gain 

for each mass window are set up using an interactive screen editor 

similar to the parameter editor described above. This editor provides 

control of five mass window and gain selections for each of the five 

basic scan types, yielding a total of 25 mass-gain pairs. The split 

screen editor runs on the master processor while the ion path slave 

processor controls the oscilloscope display. Whenever an entry is 

changed in the split screen editor, this information is transferred 

to the ion path slave to control the format of the display.  

These three types of display provide the user with a variety of 

immediate feedback about his or her experiment and the performance of 

the instrument. The split screen display is a very helpful aid when 

tuning the instrument. The ability to rapidly switch between different 

scan types while tuning makes it much easier to optimize the 

instrument performance for the various scan modes.  

One of the most comfortable and useful forms of instrument 

control implemented in this system is a function we have been calling 

"softknobs". The "softknob" is an optical rotary encoder that 

generates two streams of pulses when it is rotated. From these pulse 

streams it is possible to determine the direction and degree of 
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rotation. One of the features of these rotary encoders is that they 

have no limit on their rotation. The shaft can rotate in either 

direction indefinitely. Four of these encoders have been interfaced 

to the master processor as another form of user input.  

The principal use of these softknobs is to allow the user to 

manually adjust devices in the system. Figure 5.9 illustrates the 

operation of the softknobs in the distributed control system. 

"Softknobs" are connected to the master processor through an interface 

that converts the two pulse streams to direction bits and a strobe 

signal. The strobe signal is used to interrupt the master processor 

each time a knobs position is changed. The processor then can read 

the direction bits to determine whether to increment or decrement a 

variable assigned to a device. Every 16 ms another task on the master 

processor reads this variable and adjusts the parameter settings for 

that device. It then sends any changes to the ionpath slave which 

outputs the appropriate value to a DAC to change a device setting.  

These "softknobs" offer several advantages over conventional 

knobs and other input devices. Since their action is controlled by 

software these knobs act as variable resolution devices. Each 

revolution of a knob generates 250 pulses; however, the software is 

free to interpret this in anyway necessary. One turn can generate a 

full-scale change of 0-10 volts at the output by assigning 0.04 volt 

value to each pulse. However, a knob could be programmed to generate 

a full-scale change for 10 revolutions by assigning a 0.004 volt value 

to each pulse. Non-linear and cyclical functions can be assigned to  
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Figure 5.9 Softknobs Functional Diagram 
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a knob with the appropriate software. The software could be programmed 

to ramp a signal up to its maximum and back down again in a cyclical 

manner as a knob is continuously rotated in one direction. The knobs 

can be reassigned in software, so that a limited number of knobs can 

control a large number of devices in any combination, thus reducing 

the costs while retaining manual control features. More than one knob 

may be assigned to a single device to provide coarse and fine 

adjustments. The software can limit the output range of a knob so 

that when a limit is reached no change occurs with further rotation 

of the knob. The possibilities are endless.  

The most important feature of the "softknobs" is that they 

provide a familiar and effective method by which the user may set 

instrument parameters without having to develop a separate set of 

manual and computer controls. As a result of the computer system 

actually setting the values, the computer knows the value each device 

is set to and can allow the user to store and retrieve them. In 

addition, the device setting can be recorded along with the data to 

form a complete data base.  

A final area of user interaction being investigated is the 

usefulness of voice output from the control system. A Votrax Type-n-

talk47 has been interfaced to the master processor. This unit can 

accept text information from the control system and convert it into 

synthesized speech. We are investigating the usefulness of this 

technique for error reporting. The audible output of the speech 

synthesis module allows the operator to move about the lab performing 
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other tasks and still be apprised of any error conditions that may 

develop. 

USER PROGRAMABILITY  

 

The ease with which a user can define new commands can greatly 

influence how effectively an instrument can be utilized. Table 5.5 

summarizes function of several of the commands available in the TQMS 

control system. These are all high-level mass spectrometry commands 

that a user must learn to use the instrument. Commands can be entered 

singly or several commands may be entered at once on one line. The 

use of FORTH allows a novice user who understands these basic commands 

to create new commands to aid him or her during an experiment.  

Figure 5.10 contains a number of examples of new command 

definitions generated from the basic set in Table 5.5 and how they 

might be used. Line 1 contains the definition of one of the existing 

commands given in Table 5.5, MS1. This command interprets the number 

on top of the stack as a mass value and sets quadrupole one to select 

the specified mass. The definition of MS1 consists entirely of other 

high-level commands created for the control system. M1 selects the 

mass of quadrupole one as the parameter to be modified, and SET 

outputs the value on top of the stack to the device, in this case 

quadrupole one. Notice that the creation of this new command required 

the user to have no knowledge of the FORTH language other than how to 

define a new word. 
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Table 5.5 Selected control system commands and their function. 

 

COMMAND   FUNCTION 

 

1SCAN     Quad one scan 

3SCAN     Quad three scan 

PSCAN     Parent scan 

DSCAN     Daughter scan 

NSCAN     Neutral loss scan 

DISP      Plot acquired data 

DLIST     List acquired data points 

KNOBS     Activate softknobs 

PED       Activate parameter editor 

SPLITS    Setup split screen display 

SET       Set a selected device to a value 

MS1       Set quad one to a specified mass 

MS3       Set quad three to a specified mass 

ADD       Add two spectra together 

SUB       Subtract two spectra 

SDIR      Display directory of acquired scans 

EI        Select EI ionization mode 

+CI       Select positive chemical ionization mode 

-CI       Select negative chemical ionization mode 

HELP      Display help information 
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 0 ( Mass Spec Programming Examples ) 

 1 : MS1  M1 SET ; 

 2 

 3    58.0 MS1 DSCAN  72.0 MS1 DSCAN  100.0 MS1 DSCAN 

 4 

 5 : DEMO1  58.0 MS1 DSCAN  72.0 MS1 DSCAN  100.0 MS1 DSCAN ; 

 6 

 7 : DAUGHTERS  BEGIN  MS1 DSCAN  DUP 0= END ; 

 8 

 9    58.0 72.0 100.0 DAUGHTERS 

10 

11 : DEMO2  58.0 72.0 100.0 DAUGHTERS ; 

 

 

Figure 5.10 Mass spectrometry programming examples 
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Line 3 in Figure 5.10, demonstrates how the MS1 command might 

be used. In this example, the experiment requires that daughter 

spectra be obtained for the parent masses 58, 72, and 100. As mentioned 

earlier, a series of commands can be issued on one line. In this case 

MS1 is used to first select the parent ion at mass 58, then a DSCAN 

command causes a daughter spectrum to be acquired. This type of 

command sequence is repeated for the parent masses at 72 and 100 amu. 

If the command sequence given in line 3 needed to be repeated 

frequently, a new word could be created to perform this function. 

Line 5 illustrates the definition the word DEMO1 which performs this 

command sequence. The definition of this new command consists of 

merely enclosing the sequence of mass spec commands between a name 

for the new command (DEMO1) preceded by a ":" and a ";". Now the three 

different scans can be acquired by issuing the single command, DEMO1.  

Although this approach to creating a new command is easy, it is 

not very versatile since each mass must specified in the definition. 

If it is frequently necessary to perform a series of daughter scans 

at a number of different parent masses, it would be advantageous if 

there were a command that allowed this to be done easily. The 

definition of such a command, DAUGHTERS, appears on line 7 of Figure 

5.10. This command accepts a list of one or more parent masses on the 

stack, and performs a daughter scan for each parent mass. The 

definition of DAUGHTERS includes both high-level mass spec commands 

and basic FORTH words for program flow control. Reference 48 describes 

the operation of most standard FORTH words in detail. The word BEGIN 

marks the beginning of a loop. MS1 takes a number from the stack and 
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sets quadrupole one to that mass, then DSCAN performs the daughter 

scan. DUP makes a copy of the number on top of the stack, and the 0= 

tests if this number equals zero. This is used to detect the end of 

the list of parent masses since the top of an empty stack always has 

a zero in it. If the number does not equal zero the word END causes 

the commands following the BEGIN to be repeated. When the last parent 

mass is processed, as indicated by a zero on the stack, the command 

is terminated. The use of the DAUGHTERS command is illustrated on 

line 9. This new word can then be used to create another new command 

DEMO2 that performs the same functions as the previous DEMO1 command. 

The definition for DEMO2 is given on line 11 of Figure 5.10. This is 

an example of how high-level mass spec commands can be combined with 

more conventional programming constructs to create a powerful new 

command. 

SUMMARY  

 

In an advanced control system, the interaction between the 

operator and the system can occur on a number of different levels. 

These shells of complexity allow an unsophisticated user to 

successfully operate the instrument with a small number of commands 

while providing more capabilities to the more knowledgeable user. In 

the system that controls the TQMS instrument there are three different 

levels; the simple command level, an intermediate level which provides 

facilities for the generation of new experimental methods, and the 

most advanced level which allows new instrument capabilities to be 
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added to the system. The knowledge that is needed for each level is 

simply an expansion of that required for the previous level.  

In light of the continued rapid pace with which the electronics 

and computer industries are developing, the future possibilities for 

chemical instrumentation are very bright.  A possibility is the 

development of an intelligent control system which would be capable 

of dynamic optimization of the instrument during the course of an 

experiment. This system would make its decisions on the tradeoffs 

between sensitivity, selectivity, analysis time, and sample size based 

on information about the experimental goals. A second stage might be 

the connection of such a control system to an intelligent data 

analysis system which would interactively work with the control system 

to perform an analysis. The data analysis system would first define 

a set of rules for the control system by interaction between the 

operator and an "expert system" program. These rules would be used to 

acquire a set of data which would then be interactively analyzed by 

the data analysis system and the operator. This analysis would produce 

a new set of rules that the control system could employ for data 

collection. The cycle of data collection and experiment definition 

would continue until further improvements in the information obtained 

from the instrument was not possible. This could lead to an 

"integrated" laboratory which would combine the intelligent 

instruments with automated sample handling. In this approach all of 

the instruments in the laboratory would be connected together to an 

"expert system" data analysis system. The operator would then interact 

with this system to define the objectives of the analysis. 
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Interactive analysis of the sample could then be performed on a number 

of instruments and the combined results of all of the experiments 

would be used to complete the analysis of the sample.   
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 ABSTRACT 

 

The application of triple quadrupole mass spectrometry (TQMS) 

to the screening of jet aircraft fuels for thiophenes is examined. 

Jet aircraft fuels present a complex hydrocarbon matrix which makes 

identification of low-level components difficult. Spectra of the 

collisionally activated dissociation (CAD) fragments of several 

thiophenes and potentially interfering compounds were obtained. The 

fragmentation reactions found to be characteristic of the thiophenes 

are the loss of a 45 amu neutral fragment and the generation of a 97+ 

daughter ion. These screening reactions were applied to untreated 

samples of JET A aviation fuel, and readily detected the presence of 

thiophene with 0-4 carbons in side-chains. The validity of these 

screening reactions was confirmed by the use of GC/MS/MS.   
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A number of studies have shown that low level concentrations of 

heteroatom containing species can affect two important 

characteristics in jet aviation fuels49,50,51,52. These are the storage 

stability and thermal stability of the fuel. The storage stability of 

a fuel is a measure of how well a fuel can tolerate long term exposure 

to temperatures between 50-125 C, without polymerizing and forming 

sediments. The thermal stability of a fuel is a measure of the amount 

of deposit formation the fuel produces when subjected for short 

periods of time to temperatures in the 200-400 C range. These are the 

conditions a fuel experiences in a jet engine where significant 

deposit formation can have serious consequences. Knowledge of the 

presence and distribution of various heteroatom containing species 

can aid studies of fuel storage and thermal stability. This 

information becomes more important when the suitability of alternate 

sources of feedstocks such as shale oil are considered.  

Jet fuels present a complex hydrocarbon matrix which makes 

identification of low-level components difficult. The probability of 

finding unique molecular ion peaks (with a unit mass resolution mass 

spectrometer) for each compound or class of compounds in the raw fuel 

mass spectrum is very low. Triple quadrupole mass spectrometry offers 

several modes of component specificity other than the molecular ion 

mass. For particular components, characteristic combinations of 

parent and daughter masses can provide a high degree of selectivity. 

In addition, particular daughter ion or neutral loss masses can be 

highly indicative of certain compound classes.  
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In the past, the use of mass spectrometry to detect small 

quantities of heteroatom species in complex hydrocarbon mixtures such 

as jet fuels required the separation of the aromatic and polar species 

from the aliphatic species that make up the bulk of the fuel. This 

can be a very time consuming operation. The goal of this project was 

to utilize the separatory power of the triple quadrupole mass 

spectrometer to determine if a screening procedure for selected 

heteroatom-containing species which did not include prior separation 

could be developed. The thiophenes were selected as the target 

compound class since their presence has been reported in jet fuels53 

and there is evidence that they affect the thermal stability of 

fuels54,55  

EXPERIMENTAL SECTION  

 

Two TQMS instruments were employed in the course of this study. 

The initial exploratory studies were performed on a triple quadrupole 

mass spectrometer built in our laboratory56, while the remainder of 

the work was performed on a model ELQ-400-3 instrument manufactured 

by Extranuclear Inc. of Pittsburg, PA.  

Instrumental Parameters. Both instruments used in this study 

were operated in the electron impact (EI) ionization mode, with 20 eV 

of electron energy. The ion source was operated at 100 C. Argon of 

99.9% purity was used as the collision gas in the second quadrupole 

region for all collisional activated dissociation experiments. The 

argon pressure was maintained between 0.5 and 1.5 mTorr. Ion energies 
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in the range of 10-20 eV were employed to induce fragmentation. All 

data were acquired using a scanning rate of 100 amu/sec.  

Sample Introduction. Samples of the reference compounds and 

fuels were introduced in liquid form into a heated inlet system by 

use of a syringe. The heated inlet system had a 500 mL expansion 

volume that was maintained at 150 C. Sample sizes varied between 1-5 

uL. The gas chromatograph was operated at a 1 mL/min. flow rate of 

helium and a split ratio of 20:1. During the GC experiments the 

injector, transfer line and ion source were operated at 200 C, 250 C, 

and 250 C respectively. The GC oven temperature was programmed for 4 

C/min heating rate starting at 50 C, continuing to 250 C and holding 

at 250 C. Sample injections into the GC were between 0.5 and 1.0 uL.  

Chemicals. All samples of pure compounds were purchased from 

either Chemservice Inc. or the Aldrich Chemical Co. The fuel samples 

were obtained from Dr. Gary Seng at NASA's Lewis Research Center.  

RESULTS AND DISCUSSION  

 

The general formula for the thiophenes is CnH2n-4S, forming a 

homologous mass series of 84, 98, 112, 126, etc. The parent mass alone 

is inadequate to identify the thiophenes since the cycloalkanes and 

olefins are isobaric with the thiophene family. Conventional mass 

spectrometers are unable to resolve these peaks unless they have a 

high resolving power (greater than 1/31,000 at 100 amu) or are 

combined with a separation technique such as GC or LC.  
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Mass spectral data from collision activated dissociation spectra 

obtained for a number of thiophenes and compounds that are isobaric 

with the thiophenes are presented in Table 6.1. These data were 

obtained by setting quadrupole 1 to transmit the parent ion, operating 

quadrupole 2 in the radio frequency only mode while it was filled 

with argon, and scanning quadrupole 3 to obtain the spectrum of all 

the collision activated dissociation (CAD) generated daughter ions57. 

The daughter spectra of the various thiophenes were studied to 

identify dissociation reactions that are unique or characteristic of 

thiophenes. The loss of a neutral fragment of 45 amu (representing 

CHS) was common to all the thiophenes and was not observed in any of 

the isobaric compounds that may be present in a complex hydrocarbon 

mixture. The formation of a 45+ fragment ion representing CHS+ was 

also observed. In addition, all of the substituted thiophenes generate 

an intense 97+ daughter ion. Figure 6.1 illustrates some proposed 

decomposition mechanisms for the loss of a 45 amu neutral fragment 

and the generation of +97 daughter ions from different thiophenes. 

Table 6.2 shows, in a condensed form, the results of the search for 

identifiable characteristics of thiophenes. As indicated earlier, 

parent mass alone is inadequate to identify the presence of a 

thiophene. However, the neutral loss of 45 amu, qualified by the 

parent mass, provides a unique identification for the thiophenes.  

A TQMS instrument is operated in the neutral loss mode to 

identify all the ions in a mixture that undergo a fixed neutral loss. 

In the neutral loss mode, quadrupoles 1 and 3 are both scanned in 

unison at a fixed mass separation. To be detected, an ion selected by 
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Table 6.1 CAD spectra of reference compounds 

 
COMPOUND               PARENT ION   FRAGMENT IONS 

 

Thiophene               84 (100.0)  69 (3.2), 58 (24.0), 45 (5.6), 39 (1.1) 

2-Methylthiophene       98 (36.1)   97 (100.0), 69 (0.8), 54 (3.7), 53 (3.6), 

                                    45 (1.9), 39 (1.6) 

2,5 Dimethylthiophene  112 (100.0)  97 (87.2), 67 (1.1), 53 (1.0), 45 (0.7) 

2-Ethylthiophene       112 (11.7)   97 (100.0), 69 (0.7), 67 (0.4), 53 (4.2), 

                                    45 (1.1) 

 

Cyclohexane             84 (90.6)   69 (24.6), 56 (100.0), 55 (35.0), 

                                    42 (24.1), 41 (56.2), 39 (2.0), 29 (1.7) 

Methycyclohexane        98 (79.7)   96 (3.6), 83 (100.0), 82 (37.0), 

                                    70 (14.8), 69 (19.5), 56 (27.0), 

                                    55 (79.3), 42 (18.8), 41 (24.5), 29 (1.9) 

 

1-Hexene                84 (62.3)   69 (33.1), 56 (52.9), 55 (100.0), 

                                    42 (47.1), 41 (34.2), 29 (8.2) 

2-Heptene               98 (59.8)   70 (22.9), 69 (57.4), 56 (100.0), 

                                    55 (70.6), 43 (4.7), 42 (8.9), 41 (34.9) 

2-Octene               112 (54.6)   83 (23.9), 70 (57.6), 56 (43.8), 

                                    55 (100.0), 42 (17.8), 41 (34.6) 

 

n-Hexane                86 (48.5)   57 (100.0), 56 (59.1), 43 (62.9), 

                                    41 (50.8), 29 (52.8), 27 (6.6) 

n-Heptane              100 (33.4)   71 (45.7), 70 (21.9), 57 (47.5), 

                                    55 (12.1), 43 (100.0), 41 (24.0), 

                                    29 (17.3), 27 (2.1) 

n-Octane               114 (14.1)   85 (25.2), 84 (10.9), 71 (14.4), 

                                    70 (6.7), 57 (26.0), 55 (7.6), 43 (100.0), 

                                    41 (12.7), 29 (7.8  
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Figure 6.1 Thiophene Decomposition Mechanisms  



120 
 

 
 

 

 

 

Table 6.2 Summary of characteristic ions 

 

 

                     PARENT MASS           NEUTRAL   DAUGHTER 

                                            LOSS        ION 

              84   98   112  86  100  114    45      97   45 

 ------------------------------------------------------------ 

            |                             |       | 

 THIOPHENE  |  X                          |   X   |        X 

 ------------------------------------------------------------ 

 2-METHYL-  |                             |       | 

 THIOPHENE  |       X                     |   X   |   X    X 

 ------------------------------------------------------------ 

 2-ETHYL-   |                             |       | 

 THIOPHENE  |            X                |   X   |   X    X 

 ------------------------------------------------------------ 

 DIMETHYL-  |                             |       | 

 THIOPHENE  |            X                |   X   |   X    X 

 ------------------------------------------------------------ 

            |                             |       | 

 1-HEXENE   |  X                          |       | 

 ------------------------------------------------------------ 

 CYCLO-     |                             |       | 

 HEXANE     |  X                          |       | 

 ------------------------------------------------------------ 

            |                             |       | 

 2-HEPTENE  |       X                     |       | 

 ------------------------------------------------------------ 

 METHYL-    |                             |       | 

 CYCLOHEXANE|       X                     |       | 

 ------------------------------------------------------------ 

            |                             |       | 

 2-OCTENE   |            X                |       | 

 ------------------------------------------------------------ 

            |                             |       | 

 n-HEXANE   |                 X           |   X   | 

 ------------------------------------------------------------ 

            |                             |       | 

 n-HEPTANE  |                      X      |   X   | 

 ------------------------------------------------------------ 

            |                             |       | 

 n-OCTANE   |                          X  |   X   | 

 ------------------------------------------------------------ 
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quadrupole 1 must undergo the selected neutral loss in quadrupole 2 

in order to be transmitted by quadrupole 3 to the detector. In the 

present instance, the neutral loss mode produces a spectrum of all 

the parent ion masses which undergo a loss of 45 amu upon collision. 

In order to obtain a scan of all ions that generate a given daughter 

ion, such as 97+, the parent scan mode is used. The parent scan 

involves selecting the desired daughter ion with quadrupole 3 while 

quadrupole 1 is scanned over the desired mass range. An ion must be 

transmitted by quadrupole 1, undergo CAD in quadrupole 2, and generate 

the particular fragment ion selected by quadrupole 3 to be detected.  

As suggested by the study of the fragmentation of pure thiophenes 

and potentially interfering compounds, the loss of 45 was used as a 

primary screening characteristic and the formation of a 97+ daughter 

ion was used as a secondary characteristic to confirm the presence of 

thiophenes in the sample. In Figure 6.2, the results of scanning 

samples of Jet A and a shale oil derived fuel for a neutral loss of 

45 are presented. Low ionization potentials (20 eV) were used in an 

attempt to minimize fragmentation of the samples in the source58. The 

peaks at 84, 98, 112, 126, 140, 154, and 168 amu indicate the presence 

and distribution of thiophenes with 0-6 carbons in side chains. Figure 

6.3 shows a portion of the raw mass spectra for Jet A and the shale 

oil fuel covering the same mass range as the neutral loss scans 

presented in Figure 6.2. Comparisons of the spectra in Figures 6.2 

and 6.3 illustrate dramatically how readily a TQMS instrument can 

detect components in complex mixtures. Figure 6.4 illustrates the 

results of scans of the two fuel samples for parents of the +97  
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Figure 6.2 45 Neutral Loss from Jet A and Shale oil 
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F

igure 6.3 Raw Spectra of Jet A and Shale oil 
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Figure 6.4 97+ Parent scans of Jet A and Shale oil 
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daughter ion used to confirm the presence of substituted thiophenes. 

The peaks at 98, 112, 126, 140, 154, and 168 are readily apparent and 

support the results presented in Figure 6.2.  

To confirm the identification of the thiophenes detected in Jet 

A by the rapid screening technique, additional experiments were 

performed with the aid of a gas chromatograph interfaced to the triple 

quadrupole mass spectrometer. These experiments involved the use of 

a technique known as multiple reaction monitoring (MRM). MRM is the 

GC/MS/MS analog of multiple ion monitoring (MIM) routinely performed 

with conventional GC/MS instruments. Instead of selecting a series of 

fixed mass settings at which to repetitively monitor the ion current, 

a series of parent-daughter mass pairs are selected to monitor the 

ion currents arising from selected CAD reactions in the collision 

cell. For example, to monitor for the 45 neutral loss from thiophene, 

quadrupole one would be set to transmit ions of mass 84, quadrupole 

two would be pressurized with collision gas, and quadrupole 3 would 

be set to transmit ions of mass 39. Similarly, several other parent-

daughter reaction pairs can be monitored sequentially and repetitively 

in an MRM experiment.  

To determine the retention times of the thiophenes, a standard 

mixture of four thiophenes was prepared in a dodecane solvent. The 

resulting MRM chromatograms are presented in Figure 6.5 and were used 

obtained the retention times of the reference thiophenes. This 

experiment was repeated with a 1.0 ul sample of Jet A. Table 6.3 lists 

the thiophenes present in the mixture, the reactions used to monitor  
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Figure 6.5 Multiple Reaction Monitoring Chromatograms 
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Table 6.3 Thiophenes, reactions, retention times 

 

 

                                               Retention Time 

                                                   (sec.) 

Compound              Monitoring Reaction       Std.   Jet A 

 

------------------------------------------------------------ 

 

Thiophene                   84 -> 39            48.0    51.0 

 

2-Methylthiophene           98 -> 53            85.8    87.9 

 

2-Ethylthiophene       112 -> 67, 97 -> 53     154.9   155.2 

 

2,4 Dimethylthiophene  112 -> 67, 97 -> 53     161.1   163.0 
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each thiophene, and the reference retention times and the retention 

times observed from Jet A. The retention times of the components of 

Jet A monitored by the reactions attributed to the thiophenes match 

the observed retention times for the reference thiophene mixture. 

These results confirm the ability of the selected screening reactions 

to detect the presence of thiophenes in complex mixtures such as jet 

aviation fuels.  

CONCLUSIONS  

 

This work illustrates a method for the development of a rapid 

screening procedure for a particular compound class using triple 

quadrupole mass spectrometer. The separatory power of a TQMS 

instrument allows detection of preselected trace components in complex 

matrices without the need for prior sample work up or additional 

chromatographic techniques. The capability of TQMS to analyze fuel 

samples directly can reduce sample handling and analysis time to about 

5 minutes. The ability of a triple quadrupole mass spectrometer to 

detect a minor component in such a complex hydrocarbon mixture can 

make it a valuable tool in fuel stability studies.  
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ABSTRACT 

 

The use of triple quadrupole mass spectrometry, an MS/MS 

technique, to detect selected species in middle distillate fuels has 

been examined. Collision-activated dissociation (CAD) spectra were 

obtained for reference compounds from several heteroatom-containing 

compound classes. These included the thiophenes, thiols, 

nitrobenzenes, pyridines and anilines. The alkylbenzenes were 

examined in addition to heteroatom-containing species. The CAD results 

were used to select screening reactions for each compound class. The 

effectiveness of these screening reactions was demonstrated by 

identifying the presence of various species in samples of Jet A 

aviation fuel, a shale oil derived fuel and No. 2 diesel fuel. Triple 

quadrupole mass spectrometry can be used to rapidly identify a number 

of different components in middle distillate fuels. This information 

can be an aid to studies of fuel composition and stability.   
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In recent years, a number of studies have shown that the thermal 

and storage stabilities of middle distillate fuels are affected by 

low level concentrations of heteroatom containing species59,60 ,61 ,62 

Thermal stability is the resistance of a fuel to deposit formation 

when stressed at temperatures encountered in an operating engine. 

Storage stability is the resistance of a fuel to the formation of 

gums under storage conditions that are less strenuous, but of longer 

duration than the thermal stresses encountered in an engine. Studies 

of thermal and storage stabilities of fuels would be aided by 

knowledge of the presence and distribution of various heteroatom-

containing species and how they change under thermal stress. This 

information becomes even more important when the suitability of 

alternate sources of feedstocks such as shale oil are considered.  

Triple quadrupole mass spectrometry (TQMS) is a tandem mass 

spectrometry or "MS/MS" technique.  An MS/MS instrument consists of 

two mass analyzers separated by an ion-molecule collision region. 

Ions of a selected mass are allowed to pass through the first mass 

analyzer and into the collision region. There the ions undergo 

collision-activated dissociation (CAD). The second mass analyzer is 

then used to select particular masses of fragment ions for detection. 

A TQMS instrument utilizes two quadrupole mass filters as mass 

analyzers. The collision cell is also a quadrupole, but one that is 

operated in the "RF only" mode. This mode provides a minimum of mass 

discrimination and acts rather as an "ion pipe" to contain the 

reactant ions and all the ionic products of the ion-molecule reaction. 

Without the quadrupole collision chamber, losses due to scattering 
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would be excessive. A block diagram of a TQMS instrument is shown in 

Figure 7.1. The three quadrupoles are identified by number, beginning 

at the source. Ions undergo CAD in the center quadrupole (number 2) 

at much lower energies (5-30 eV) than other MS/MS techniques which 

use magnetic and electric sectors and operate at collision energies 

in the 3-10 keV range63.  

A TQMS instrument can be operated in a variety of modes to 

perform different types of experiments. Figure 7.2 illustrates the 

operation of a triple quadrupole mass spectrometer for three types of 

experiments useful in mixture analysis. In addition to mixture 

analysis applications, TQMS can be a useful tool in the elucidation 

of the structure of pure compounds64.  

In MS/MS the term "parent" is used to describe an ion selected 

from the ion source by the first mass analyzer. The term "daughter" 

is used to describe an ion that is a result of fragmentation of a 

"parent ion". In TQMS, the daughter ions are produced by CAD in the 

the collision region. The operation of a TQMS instrument to perform 

the three types of MS/MS experiments utilized in this study is 

described below. 

Daughter Scan. Quadrupole one is set to transmit only ions of a 

selected mass from the source. These ions undergo CAD in the collision 

cell and generate a number of fragment or daughter ions. Quadrupole 

three is scanned to allow these fragment ions to be detected. The 

result is a spectrum of all the daughter ions generated by the parent 

ion selected by quadrupole one. This type of experiment is 
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Figure 7.1 TQMS instrument block diagram 
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Figure 7.2 TQMS modes used in Mixture analysis 
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particularly useful during the investigative and developmental phase 

of a study such as described in this paper. 

Parent Scan. This type of experiment generates a spectrum of all 

parent ions in the source that produce a selected daughter ion. 

Quadrupole three is set to transmit only ions of a selected mass from 

the collision cell. Quadrupole one is scanned over the desired mass 

range. All ions that undergo CAD to generate a daughter ion of the 

mass selected by quadrupole three are detected. The resulting spectrum 

consists of parent ion masses which fragment to form the selected 

daughter mass. 

Neutral Loss Scan. Quadrupoles one and three are scanned in unison, 

but with a constant difference in selected mass. All ions that undergo 

a neutral loss equal to the mass offset of quadrupoles one and three 

will be detected. The result is a spectrum of parent ion masses which 

undergo the selected loss of neutral mass upon fragmentation.  

The ability to perform several types of experiments on a sample 

with a single instrument makes TQMS an attractive option for rapid 

screening applications.  

The complex hydrocarbon matrix of the middle distillate fuels 

makes the determination of low-level components difficult. The chance 

of finding unique molecular ion peaks in the mass spectrum of a raw 

fuel for each compound or class of compounds is almost negligible. 

The different types of experiments that can be performed with a triple 

quadrupole mass spectrometer offer several modes of component 
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specificity other than the mass of the molecular ion. Characteristic 

combinations of parent and daughter ion masses can provide a high 

degree of selectivity for particular components. In addition, 

particular daughter ion or neutral loss masses may be highly 

indicative of certain compound classes.  

The detection of selected aromatic and heteroatom species in a 

complex hydrocarbon matrix such as Jet A by mass spectrometry has 

generally required the separation of the aromatic and polar species 

from the aliphatic species that make up the bulk of the fuel. The 

goal of this project was to utilize the tremendous separatory power 

of the triple quadrupole mass spectrometer to develop screening 

procedures for selected aromatic and heteroatom species that do not 

require prior separation. The compound classes selected for 

investigation included the thiophenes, alkylbenzenes, pyridines, 

anilines, and the nitrobenzenes. The pyridines and thiophenes are of 

particular interest since their presence has been reported in middle 

distillate fuels and there is evidence that they have an adverse 

effect on the stability of these fuels65,66 ,67 ,68.  

EXPERIMENTAL  

 

Instrumental. The instrument employed in this study was a model ELQ-

400-3 triple quadrupole mass spectrometer manufactured by 

Extranuclear Inc. of Pittsburg, PA. Electron impact (EI) ionization 

with 20 eV of electron energy was used throughout the course of this 

study. The ion source was operated at 100 C. Argon of 99.9% purity 
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was used as the collision gas in the second quadrupole region for all 

collisionally-activated dissociation experiments. The argon pressure 

was maintained at 1.5 mTorr. Ion energies in the range of 10-20 eV 

were employed to induce fragmentation. Data were acquired using 

scanning rates between 100 and 250 amu/s. 

Sample Introduction. An all-glass, batch type inlet system with a 500 

ml expansion volume was used to introduce liquid samples into the 

mass spectrometer. Samples varying between 1-5 ul were injected into 

the inlet system by means of a syringe. Several minutes were allowed 

for the sample to completely vaporize before a valve on the inlet 

system was opened to introduce the sample into the ionization region 

of the mass spectrometer. 

Chemicals. All pure compounds used in this study were purchased from 

either Chemservice Inc or the Aldrich Chemical Co. The Jet A, and 

shale oil derived fuel samples were obtained from NASA, Lewis Research 

Center, Cleveland, OH, and the diesel fuel sample was obtained from 

a local service station.  

 

RESULTS AND DISCUSSION  

 

In order to identify those fragmentation characteristics which 

may be useful for screening purposes, several compounds in each class 

were examined. The daughter scan mode of the TQMS instrument was used 

for this study to obtain the fragmentation spectra of the species of 
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interest. The results of these fragmentation experiments are listed 

in Table 7.1. These results were then examined to identify 

characteristic CAD reactions for each class of compounds. It is 

desirable to have two characteristic reactions for a compound class 

to help ensure the accuracy of the screening procedure.  

Examination of the CAD results for the thiophenes led to the 

identification of two reactions suitable for screening applications. 

One of these is the loss of 45, representing the loss of CHS from 

fragmentation of the thiophenic ring. The second screening reaction 

is the generation of a 97+ daughter ion by all of the substituted 

thiophenes. This leads to a screening procedure which includes a 

neutral loss scan for the loss of 45 as the primary screening reaction 

and a parent scan for the parents of 97+ daughter ions as a secondary 

screening reaction to confirm the presence of the thiophenes69. All 

of the thiophenes also generated a 45+ daughter ion. This fragment 

ion could be used as additional confirmation of the results obtained 

by the principal screening reactions outlined above.  

The study of the alkylbenzenes yielded two characteristic 

daughter ions suitable for screening purposes. These daughter ions 

appear at 65 and 91 amu. The 65+ daughter ion is a result of 

fragmentation of the aromatic ring. The daughter ion at 91 amu is a 

result of the formation of the well known resonance-stabilized 

tropylium ion that is particularly characteristic of the 

alkylbenzenes70.  
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Table 7.1 Daughters of Reference Compounds. 

 
COMPOUND               PARENT ION   FRAGMENT IONS 

 

Thiophene               84 (100.0)  69 (3.2), 58 (24.0), 45 (5.6), 39 (1.1) 

2-Methylthiophene       98 (36.1)   97 (100.0), 69 (0.8), 54 (3.7), 53 (3.6), 

                                    45 (1.9), 39 (1.6) 

2,5 Dimethylthiophene  112 (100.0)  97 (87.2), 67 (1.1), 53 (1.0), 45 (0.7) 

2-Ethylthiophene       112 (11.7)   97 (100.0), 69 (0.7), 67 (0.4), 53 (4.2), 

                                    45 (1.1) 

Benzene                 78 (100.0)  77 (24.3), 76 (3.6), 63 (3.1), 52 (2.6), 

                                    51 (2.6), 50 (3.4) 

Toluene                 92 (37.2)   91 (100.0), 66 (1.9), 65 (8.6), 63 (1.0) 

o-Xylene               106 (56.8)   91 (100.0), 79 (1.1), 78 (1.4), 77 (1.6) 

                                    65 (3.8) 

m-Xylene               106 (46.7)   91 (100.0), 78 (1.4), 77 (1.4), 65 (2.9) 

p-Xylene               106 (37.7)   91 (100.0), 79 (1.0), 78 (1.4). 77 (1.5) 

                                    65 (3.0) 

Ethylbenzene           106 (17.6)   91 (100.0), 78 (2.4), 65 (3.1) 

t-Butylbenzene         134 (0.9)    119 (100.0), 91 (52.9), 65 (1.2) 

Nitrobenzene           123 (7.0)    93 (42.1), 77 (100.0), 65 (33.0) 

m-Nitrotoluene         137 (12.0)   107 (16.2), 91 (100.0), 79 (12.2), 

                                    77 (8.8), 65 (9.4) 

Ethylnitrobenzene      151 (12.0)   136 (2.7), 134 (8.5), 121 (20.4), 

                                    106 (1.5), 105 (100.0), 103 (23.4), 

                                    93 (21.3), 91 (14.7), 79 (9.2), 78 (4.6), 

                                    77 (15.5) 

1-Octanethiol          146 (100.0)  112 (78.8), 84 (10.8), 83 (19.3), 

                                    82 (12.6), 70 (15.2) 

1-Dodecanethiol        202 (87.9)   168 (100.0), 111 (12.4), 97 (27.9), 

                                    96 (27.4), 83 (27.4), 82 (21.5), 70 (5.0) 

Indole                 117 (100.0)  91 (1.0), 90 (49.1), 89 (34.2), 63 (1.3) 

2-Methylindole         131 (86.8)   130 (100.0), 116 (1.5), 104 (4.2), 

                                    103 (8.0), 91 (1.8), 89 (1.5), 78 (2.8), 

                                    77 (6.3) 

2,3-Dimethylindole     145 (100.0)  144 (73.4), 130 (52.6), 128 (5.0), 

                                    118 (3.1), 117 (2.4), 116 (2.6), 

                                    115 (7.2), 103 (3.2), 91 (2.4), 89 (1.1), 

                                    78 (1.3), 77 (5.2) 

Pyridine                79 (100.0)  77 (23.6), 52 (22.7), 51 (2.6), 50 (2.2) 

4-Methylpyridine        93 (100.0)  92 (24.3), 78 (3.6), 67 (18.1), 66 (30.6), 

                                    65 (17.9), 64 (1.7), 53 (1.3), 40 (2.1) 

2,4-Dimethylpyridine   107 (100.0)  92 (10.2), 80 (4.4), 79 (15.6), 78 (5.3), 

                                    77 (5.3), 66 (2.2), 65 (3.4) 

2,6-Dimethylpyridine   107 (100.0)  92 (10.8), 80 (2.2), 79 (8.3), 78 (2.3), 

                                    77 (3.6), 66 (12.0), 65 (5.0) 

Aniline                 93 (100.0)  92 (4.8), 78 (1.9), 77 (1.1), 76 (0.2), 

                                    67 (1.8), 66 (58.1), 65 (9.7), 54 (1.4) 

o-Methylaniline        107 (100.0)  106 (94.1), 90 (1.0), 89 (2.5), 80 (2.8), 

                                    79 (5.9), 78 (3.0), 77 (6.0) 

m-Methylaniline        107 (87.8)   106 (100.0), 90 (1.5), 80 (2.9), 80 (3.2), 

                                    79 (8.3), 78 (3.9), 77 (9.7) 

2,4-Dimethylaniline    121 (100.0)  120 (62.1), 106 (91.7), 104 (1.9), 

                                    103 (2.4), 94 (1.2), 93 (1.5), 92 (2.0), 

                                    91 (2.5), 80 (1.1), 79 (5.0), 78 (2.8), 

                                    77 (8.6) 

2,6-Dimethylaniline    121 (100.0)  120 (35.1), 106 (69.7), 104 (1.6), 

                                    103 (1.6), 94 (0.9), 93 (1.5), 92 (1.3), 

                                    91 (1.8), 80 (1.1), 79 (4.1), 78 (2.7), 

                                    77 (6.9) 
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The fragmentation results for the nitrobenzenes show that the 

loss of 46 and 30 is characteristic of this class of compounds. These 

correspond to the loss of NO2 and NO from the parent ion71. The loss 

of 46 seems particularly well suited as a primary screening 

characteristic, since in the CAD spectra of the pure compounds this 

loss generates the most intense ion.  

The alkylthiols, octanethiol and dodecanethiol, exhibit a strong 

loss of 34, which corresponds to a loss of SH2. Since the thiol group 

is the only unique feature in the alkyl chain, only one screening 

reaction can be identified.  

The indoles exhibit the loss of 27 and 54 as well as the 

formation of a 91+ daughter ion. The loss of 27 and 54 correspond to 

CHN and C4H6 respectively. Since the indole structure contains a 

benzene ring the formation of the 91+ daughter ion is expected.  

Unique identification of the presence of the pyridines and/or 

anilines is made difficult because these two classes of compounds 

have the same molecular formulas. The major structural difference 

between the two compound classes is whether or not the nitrogen is 

incorporated into the aromatic ring structure. Both the anilines and 

the pyridines exhibit a neutral loss of 27 amu upon fragmentation. 

The loss of 27 (CHN) can be used as a primary screening reaction to 

locate nitrogen-containing aromatic species. The anilines undergo a 

loss of NH3 as indicated by the loss of 17 from the parent ions. This 

loss can be used to determine if any anilines are present at the 

masses detected by the loss of 27. If any loss of 17 is observed, 
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anilines are present in the sample with pyridines possibly present. 

If no loss of 17 is observed the presence of pyridines is indicated 

by the loss of 27.  

The indoles exhibit the loss of 27 and 54 as well as the 

formation of a 91+ daughter ion. The loss of 27 and 54 correspond to 

CHN and C4H6 respectively. Since the indole structure contains a 

benzene ring the formation of the 91+ daughter ion is expected. The 

loss of 27 can be used for screening for indoles in the presence of 

pyridines and anilines since the mass series for the indoles does not 

overlap the mass series of the pyridines and anilines.  

Table 7.2 summarizes the screening reactions selected for the 

compound classes studied. Three types of fuels were examined in this 

study; Jet A a jet aviation fuel, a shale oil derived jet fuel, and 

No. 2 Diesel fuel. Mass spectra of raw Jet A and diesel fuel are shown 

in Figure 7.3. The complexity of the spectra illustrates the 

impracticality of attempting to use parent masses alone to identify 

trace components present in the fuels.  

The general formula for the thiophenes is CnH2n-4S, forming a 

homologous mass series of 84, 98, 112, 126, 140, etc. The results of 

screening all three fuel type for substituted thiophenes are presented 

in Figure 7.4. These spectra show the presence of thiophenes with 1 

to 7 carbons in side chains. General trends can also be observed in 

these results. In Jet A the thiophenes seem to be more highly 

substituted than in the other fuels. In the shale oil spectrum the 

thiophene distribution favors the low end of the mass range. Whereas  
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Table 7.2 Summary of Screening Reactions 

 

 

    NEUTRAL LOSS     COMPOUND CLASS 

 

 

        -17          Anilines 

 

        -27          Anilines, Pyridines, Indoles 

 

        -30          Nitrobenzenes 

 

        -34          Alkylthiols 

 

        -45          Thiophenes 

 

        -46          Nitrobenzenes 

 

        -54          Indoles 

 

 

 

    DAUGHTER ION     COMPOUND CLASS 

 

 

        65+          Alkylbenzenes 

 

        91+          Alkylbenzenes 

 

        97+          Thiophenes 
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Figure 7.3 Raw MS of Jet A, Shale Oil and Diesel fuel 
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Figure 7.4 Parents of 97+ for Jet A, Shale Oil, Diesel 
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in the case of the diesel the thiophene distribution seems to be 

fairly even over the entire mass range.  

Figure 7.5 presents the results of screening for the 

alkylbenzenes that form the homologous mass series 92, 106, 120, 134, 

148, etc. The presence of alkylbenzenes with up to 6 carbons in side 

chains (mass 162) is indicated in Jet A and the shale oil sample where 

the maximum is 5 carbons (mass 148) in the diesel fuel.  

The results of screening for the presence of indoles by observing 

the loss of 54 are show in Figure 7.6. In none of the fuel samples 

was the presence of indole (117) indicated. The presence of at least 

three indoles in Jet A is indicated by the peaks at masses 131, 145, 

and 159. Two indole peaks appear in the spectra for shale oil (145, 

159) and diesel fuel (131, 145).  

Figure 7.7 compares the results of screening for the 

nitrobenzenes in Jet A and diesel fuel. The Jet A appears to have two 

nitrobenzene components at 123 and 137 amu. Diesel fuel has three 

nitrobenzenes as indicated by the peaks at 123, 151, and 165 amu. No 

nitrobenzenes were observed in the shale oil fuel. On the subject of 

negative results, no alkylthiols were sucessfully detected in any of 

the fuel samples.  

Finally, Figure 7.8 presents the results of screening the shale 

oil derived fuel for the pyridines and anilines. The  spectrum of the 

loss of 27 indicates the possible presence of pyridines or anilines 

at masses 107, 121, 135, and 149. The only mass the spectrum of the 
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Figure 7.5 Parents of 91+ for Jet A, Shale Oil, Diesel 
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Figure 7.6 Loss of 54 from Jet A, Shale Oil, Diesel 
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Figure 7.7 Loss of 46 from Jet A, Diesel 
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Figure 7.8 Loss of 27 and 17 from Shale Oil 
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loss of 17 (used to screen for anilines) has in common with this list, 

is 149. This suggests that there are at least the pyridines and one 

aniline to be found in the sample.  

These results demonstrate the ability of TQMS to detect selected 

species in hydrocarbon fuels. Although no attempt was made to quantify 

these results, the ability to readily detect single ring thiophenes 

that are present in these types of fuels at below the 10 parts per 

thousand range gives a rough indication of the sensitivity of the 

technique. The use of internal standards such as isotopically labeled 

species or standard addition experiments are effective approaches for 

quantitation by TQMS when necessary. Another useful approach for 

quantitation would be to use multiple reaction monitoring (MRM), the 

TQMS analog of multiple ion monitoring in GC/MS, to monitor the ion 

currents for the reactions of interest and then use the area of the 

chromatographic peaks for quantitation as in GC/MS.  

CONCLUSIONS  

 

The separatory power of a TQMS instrument permits the detection 

of trace components in fuels without prior sample work-up or 

additional chromatographic techniques. Sample handling and analysis 

time can be reduced to about 5 minutes because of the ability of TQMS 

to analyze fuel samples directly. Since each scan takes only a few 

seconds to complete, screening for many compound classes can be 

accomplished in a very short time. The ability of a triple quadrupole 
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mass spectrometer to detect minor components in such complex mixtures 

can make it a valuable tool in fuel stability studies.  
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Short terms goals in the instrumentation area could focus on 

consolidating the gains made in our laboratory over the past several 

years. A number of advanced capabilities such as low-cost graphics, 

floating point coprocessor support, Winchester disk support, 

distributed processing capability, and the softknobs, have been made 

available for use in the laboratory. To date, only the TQMS control 

system takes advantage of these capabilities. The low-cost hardware 

that is available needs to be utilized to provide more graphics and 

data reduction functions on control systems. The greater and more 

immediate the feedback of experimental results to the operator the 

more efficiently a series of experiments can be performed.  

In the area of hardware development two projects might be 

considered for future development. One is an interprocessor module 

similar to the status module featuring a greater amount (1K) of dual-

port memory. This would be helpful since in a distributed system there 

are a number of pieces of information that all the processors need to 

know. A larger dual-port memory store would simplify the dissemination 

of this type of information and reduce redundancy in the system. The 

second project would be the development of a CPU module based on the 

68008 microprocessor chip. The 68008 provides all of the features of 

a 68000, except it utilizes only an 8-bit data bus instead of a 16-

bit data bus. This processor allows large memory spaces to be accessed 

more easily than the 8088 processor currently being used. This would 

allow less-expert programmers to develop larger applications which 

could include more functions to aid the operator.  
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In order for triple quadrupole mass spectrometry to gain more 

widespread acceptance and use as an analytic tool, more practical 

applications need to be demonstrated in the literature. The fuel 

analysis capabilities demonstrated in chapters 6 and 7 provide a 

fertile ground for new applications. These types of applications are 

of particular interest to the petroleum companies which are among the 

largest users of mass spectrometry.  

To continue to expand the applications of TQMS to fuel studies, 

screening procedures for additional compound types need to be 

investigated. Compound classes of interest include the pyrroles, 

furans, benzofurans, quinolines, tetrahydroquinolines, tetralins 

(tetrahydronapthalenes), and indans. Members of these compound 

classes are illustrated in Figure 8.1. The furans, pyrroles and 

quinolines are of particular interest since they have been shown to 

contribute to deposit formation in jet fuels.

72  

If these studies are undertaken, the screening reactions could 

be used with GC/MS/MS to attempt to develop methods of quantifying 

the species present and identifying specific isomers. The screening 

and quantification methods could then be applied to fuel samples 

before and after thermal stressing. The deposit formation results 

obtained from experiments run on a jet fuel thermal oxidation tester 

(JFTOT) can then be correlated with the detailed composition of the 

fuel obtained by the TQMS techniques to identify the species and 

mechanisms involved in deposit formation.  
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Figure 8.1 Compound Classes for Future Study 

  



159 
 

 
 

An area of potential application of TQMS to fuels not directly 

related to stability studies is fuel contamination. Leakage between 

storage areas, especially in naval vessels can cause relatively clean 

fuels such as aviation fuels to be contaminated by dirtier fuels such 

as diesel fuel and bunker oils. Studies of these dirtier fuels should 

lead to the identification of species not found in jet fuels. These 

species could then be screened for in the jet fuels to detect any 

fuel contamination.  

In the process of the author's work several interesting 

fragmentation patterns were observed. Since the author's work already 

covered several diverse topics no fragmentation studies were 

undertaken. These observations will be stated briefly for whomever 

might find them interesting to investigate. The first, the 

fragmentation of benzenethiol produced the following ion intensities; 

110 (100.0), 84 (4.4), 66 (6.7). The interesting fragmentation is the 

loss of 26 (C2H2) from the parent to generate the 84+ daughter ion. 

The expected loss of 33 (SH) or 34 (SH2) was not observed. The 84+ 

daughter ion is suggestive of a thiophene ring, indicating that the 

benzene ring may have ruptured lost C2H2 and formed a thiophene ring. 

The 84+ ion also formed in the source could be fragmented to see if 

it is indeed a thiophene ring. If so, this leads to the question of 

why formation of a thiophene ring is favored so strongly over losing 

the SH group and leaving the highly stable benzene ring structure 

intact.  
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The second area that might yield interesting information on 

fragmentation mechanisms is the observation that the methyl and 

dimethyl substituted pyridines form a 92+ daughter ion upon CAD. It 

is possible that this ion may be a pyridine analog of the tropylium 

ion so commonly found among the alklybenzenes.  

Finally, a few closing comments, remember "No guts, No glory". 

If you are unfortunate enough to have read this entire dissertation, 

I would like to bestow a curse upon you "May you live in interesting 

times". May the Force be with you.

 
Worstell, J.H., Daniel, S.R., Fuel, 1981, 60, 481-4. 
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DEVICE PARAMETERS 

The computer has control over a great number of the devices that 

affect instrument performance. There are a variety of methods 

available to the user to set up these parameters, but first a 

discussion of their organization is in order. The user may configure 

up to sixteen sets of parameters at one time. These sets of parameters 

are stored on the disk and can be identified with a 64-character 

title. Only one parameter set can be active at a time. This is 

accomplished by loading a selected set into memory. In addition, each 

set of parameters is divided into four sections referred to as modes. 

These mode sections contain complete sets of values for all device 

for different ionization modes. These are identified as EI, +CI, -CI, 

and USR corresponding to electron impact, positive chemical 

ionization, negative chemical ionization, and a spare user ionization 

mode. Thus, in a given parameter set, values can be set for all 

devices for each different ionization mode available. Once a parameter 

set is in memory it is possible to switch between the device settings 

for the different ionization modes very rapidly without having to 

access the disk again. Each device in the system has four parameters 

associated with it. These are referred to as the CURRENT, START, END, 

and STEP values. The CURRENT value is the value to which the device 

is presently set to and to which it is returned to if the device is 

scanned. The remaining values control the device when it is scanned. 

The STEP value is the step size the value of a device is incremented 

as it is scanned from the START value to the END value.  

PARAMETER STORAGE AND RETRIEVAL 

As mentioned above up to sixteen sets of parameters can be stored on 

disk, they are numbered 0 to 15. Before a set can become active it 

must be loaded into memory. This section deals with moving parameter 

sets between disk and memory.  

PDIR - PARAMETER DIRECTORY 

This command displays a list of the titles assigned to the 16 parameter 

sets.  

PGET - GET PARAMETERS 

n PGET - Moves parameter set n into memory overwriting the set that 

is in memory. All the devices are updated to the new values.  

PSAVE - PARAMETER SAVE 

n PSAVE - Stores the current parameter settings residing in memory 

into parameter set n on the disk. None of the device settings are 

affected.  
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TUNESAVE 

 n TUNESAVE - copies the CURRENT value of the device settings for the 

currently selected ionization mode into the same ionization mode of 

parameter set n on the disk.  

ALLSAVE 

Copies the CURRENT value of the device settings for the currently 

selected ionization mode into the settings for the same ionization 

mode of all the parameter sets on the disk.  

IONIZATION MODE SELECTION 

Whenever a new ionization mode is selected out of the parameter set 

currently in memory all device values are updated and the source and 

detection electronic are put in the proper mode if they are under 

computer control.  

EI 

Selects the electron impact ionization mode.  

+CI 

Selects the positive chemical ionization mode.  

-CI 

Selects the negative chemical ionization mode.  

USR 

Selects the user ionization mode. Currently this turns all filaments 

off.  

PARAMETER EDITOR 

The parameter editor allows the user to modify any of the device 

parameters of the parameter set in memory using a screen oriented 

editor. The changes go into effect as soon as the editor is exited. 

The changes do not affect the setting of the parameter set on the 

disk unless the appropriate PSAVE command is issued.  

PED 

PED - activates the parameter editor. The editor displays the 

parameter set number and title of the active parameter set transferred 

into memory with the PGET command, the ionization mode selection when 

the editor was invoked, and the values of all the device parameters. 

Note that PED always returns to the ionization mode that was in effect 

when it was invoked. A cursor, which is highlighted in reverse video, 

will be placed at the first entry in the parameter set. The arrow 
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keys on the terminal are used to move the cursor to the parameter 

value to be modified. A return entered alone will cause the cursor to 

move the CURRENT value entry of the next device in the list. To change 

the value on which the cursor is positioned, type in the new value 

followed by a return.  In addition to the arrow keys the parameter 

editor responds to several single character commands as follows: 

 M - TOGGLE MODE 

This command toggles the parameter editor between the values for the 

different ionization modes. Each time M is entered it toggles the 

editor to the next ionization mode in a circular list that follows 

the order EI, +CI, -CI, USER, EI, etc.  

T - ENTER TITLE 

This command erases the current title associated with the parameter 

set and moves the cursor to the title line to allow a new title to be 

entered. A new title may be up to 64 characters in length with spaces 

allowed and is terminated with a return.  

C - COPY 

Copies the values at the current position into a single entry buffer.  

I - INSERT 

Inserts the value in the buffer into the value at the current cursor 

position.  

R - REPAINT 

Redisplays the entire screen.  

Q - QUIT 

Exit from the parameter editor. 

  

.PED - DISPLAY PARAMETERS 

Displays all of the parameter settings for the current ionization 

mode without entering the parameter editor. Often used in conjunction 

with the PRINT command.  

STAT - PARAMETER STATUS 

Equivalent to .PED.  

SETTING SINGLE PARAMETERS 

The following four commands all the user to set one of the parameters 

for a device without entering the parameter editor. To work properly 

the device whose value is to be modified must first be selected by 
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entering it two or three letter mnemonic name. For example, to change 

lens three to 12.3 volts one would enter "L3 12.3 SET" or "12.3 L3 

SET". Note that the device name may be entered before or after the 

numeric value. The only requirement is that it appears before the 

command word.  

SET 

n SET - sets the current value of the selected device to n.  

!START 

n !START - sets the start value of the selected device to n.  

!END 

n !END - sets the end value of the selected device to n.  

!STEP 

n !STEP - sets the step value of the selected device to n.  

SETTING QUAD DC/RF MODES 

 

DC 

n DC - sets quad n in the DC mode.  

RF 

n RF - sets quad n in the RF-only mode.  

RRD - RF/RF/DC 

Places quads 1 and 2 in the RF-only mode and quad 3 in the DC/RF mode.  

DRR - DC/RF/RF 

Places quad 1 in the DC/RF mode and quads 2 and 3 in the RF-only mode.  

DRD - DC/RF/DC 

Places quads 1 and 3 in the DC/RF mode and quad 2 in the RF-only mode.  

MISC 

 

MS1 - SET MASS QUAD 1 

n MS1 - sets the mass selected by quad one to n. Equivalent to "n M1 

SET".  
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MS3 - SET MASS QUAD 3 

n MS3 - sets the mass selected by quad three to n. Equivalent to "n 

M3 SET".  

LOSS - SET NEUTRAL LOSS 

n LOSS - sets up for a neutral loss of n. Start mass for quad three 

is set equal to (start mass quad one) - n.  

DEVINIT - INITIALIZE DEVICES 

Sets all devices to their current value in the parameter table. This 

is automatically done after each PGET.  
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DATA FILE OPERATIONS 

The software system maintains a large file (4,192,000 bytes) on the 

Winchester disk for data storage. This file is divided into 65500 

records, each 64 bytes long. All the data acquired by the system is 

stored in this file. A distinction is made between two types of data 

in the file. These are SCANS and EXPERIMENTS. A SCAN is a set of data 

collected with one of the commands discussed in the next chapter. 

Each time a data SCAN is acquired it is written into the data file. 

An EXPERIMENT is a set of sequentially acquired scans, hopefully, but 

not necessarily related. Since a great number of scans may be written 

on the disk EXPERIMENT records can be written to group scans together. 

Each EXPERIMENT has a name up to 16 characters in length (spaces may 

be included). After data has been acquired, data can be retrieved 

from any experiment. However new data is always stored only in the 

last experiment on the disk. The various commands used to examine, 

select, and enter EXPERIMENT information in the data file are 

discussed below.  

?DISK - CHECK DISK SPACE 

Displays the number of records currently in use in the data file and 

the number of records still free.  

EDIR - EXPERIMENT DIRECTORY 

Experiment Directory - Lists all of the experiments in the data file 

along with the time and date they were created, the number of scans, 

and the total number of records used in the experiment. When displayed 

on the terminal EDIR will pause each time the screen is full. Strike 

the space bar to continue the experiment directory or the return key 

to leave the directory.  

SELECT - SELECT EXPERIMENT 

 SELECT "experiment name" - Selects an existing experiment as the 

experiment from which to retrieve data. No matter which experiment is 

selected new data will always be added to the last experiment on the 

disk.  

?EXPT - DISPLAY EXPERIMENT NAME 

Displays the name and header information for the currently selected 

experiment.  

EXPT - ENTER A NEW EXPERIMENT 

EXPT "name" - defines a new experiment called "name" on the disk. The 

name of an experiment may be up to 16 characters and may contain any 

character except "\". All data acquired subsequently to the EXPT 

command will be entered into this new experiment. The new experiment 
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will also be made the current experiment for any of the display 

commands.  

DELETE - DELETE AN EXPERIMENT 

DELETE "experiment name" - deletes all the data in the specified 

experiment from the disk.  

NOTES 

Along with other information in the header for an experiment is space 

or the user to enter four 64-character lines of notes about the 

experiment, his or hers love life etc. Notes may be entered into the 

experiment selected as the current experiment at any time. Thus, notes 

may be entered at the start, or end of an experiment or days later 

when you think up an excuse for the poor results. Each note line is 

entered by a separate command, and can be written over by repeating 

the command. The form of the note commands is as follows.  

     1NOTE This is the text for note one. 

     2NOTE This is the text for note two. 

     3NOTE This is the text for note three. 

     4NOTE This is the text for note four. 

 

?NOTES - DISPLAY NOTES 

?NOTES displays all of the notes for the current experiment.  

SDIR - SCAN DIRECTORY 

Scan Directory - lists the header information for all of the scans in 

the current experiment. This header information includes the scan 

type, range of the scan, mass settings of quads 1 and 3, ionization 

mode, number of data points acquired and the Total Ion Current 

measured in the scan. When a Scan Directory is displayed on the 

terminal it will pause each time the screen is full. Strike the space 

bar to continue, or a return to leave the directory.  

SS - SELECT SCAN 

n SS - Selects Scan n of the current experiment as the current scan 

for display and reporting purposes.  

?SCAN - DISPLAY CURRENT SCAN 

?SCAN - Displays the header information for the currently selected 

scan.  

INITIALIZE 

INITIALIZE - removes all data files from the winchester disk. 
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DATA ACQUISITION 

Data acquisition operations can be broken down into two basic types. 

Those that perform peak finding while scanning a parameter and those 

that do not. All data acquisition operations automatically write the 

data to the disk when the operation is complete. The number of data 

points that a single scan can obtain is limited to 1024. The ion 

current measured by the system is expressed as a number between 0 and 

1,048,575, giving the data acquisition system a dynamic range of six 

orders of magnitude.  

ACQUISITION PARAMETERS 

 

RATE 

n RATE - sets the rate at which the scan is performed, where n 

specifies one of the scanning rates given in the table below.  

     RATE     POINTS/SEC     TIME/POINT     AMU/SEC (0.1 amu steps) 

       0 10,000        100 usec      1,000 

       1  5,000        200             500 

       2  2,500        400             250 

       3  1,000      1 msec   100 

       4    500      2     50 

       5    250      4     25 

       6    100     10     10 

       7     50     20      5 

       8     25     40             2.5 

       9     10         100     1 

       10      5         200   0.5 

       11    2.5         400  0.25 

       12      1       1 sec  0.10 

       13    0.5       2  0.05 

       14   0.25       4      0.025 

 

As the scanning rate is decreased the number of times the ion current 

is sampled before an average value is obtained for a given data point 

is increased. Thus, as the scanning rate is lessened the signal to 

noise ratio of the data improves. This rate parameter controls the 

scanning rate of all data acquisition, those that perform peak finding 

and those that do not. 

 

PEAK FINDING PARAMETERS. 

There are three parameters that control the performance of the peak 

finding algorithm. These are threshold, minimum width, and maximum 

width. Currently there are no provisions for saving and recalling 
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these parameters from the disk. The user is advised to check these 

parameters before performing any data acquisition functions.  

THRESHOLD 

The threshold is the value which the ion current must become greater 

than before a peak can be recognized. It may have any value in the 

range of 0 to 65535.  

MINIMUM WIDTH 

This parameter defines the minimum acceptable peak width in terms of 

step size. That is if it is set to two and the step size is 0.1 amu 

than the minimum acceptable peak width is 0.2 amu. The main function 

of this parameter is to filter out narrow noise spikes.  

MAXIMUM WIDTH 

This parameter the maximum width of the peak in terms of step size. 

If the ion current has not returned to below threshold by this point 

the peak is terminated and the software beings searching for the 

isotope peak. To indicate that a peak exceeded the maximum width value 

and was abnormally terminated the flags value for that peak is set to 

one.  

ASET - SET ACQUISITION PARAMETERS 

ASET first displays a table of rate setting similar to the one given 

earlier. ASET then displays the values all four acquisition 

parameters. ASET will then display a ? next to each parameter in 

sequence. To change a parameter type in a new value, to leave it 

unchanged just strike return.  

.ASET - DISPLAY ACQUISITION PARAMETERS 

Displays the same information as ASET without asking the user to 

change any of the values.  

!THRESHOLD 

n !THRESHOLD - set the threshold parameter to n.  

!PWIDTH 

n !PWDITH - set the minimum peak width parameter to n.  

!MWIDTH 

n !MWIDTH - set the maximum peak width parameter to n.  

MASS SCANNING 
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The control system allows the user to scan the mass filters of the 

TQMS in five different ways: mass scan of quad one, mass scan of quad 

three, parent, daughter, and neutral loss scans. These modes are 

abbreviated as 1, 3, P, D, and N respectively.  

1SCAN - QUAD ONE SCAN 

Sets the instrument into the DC/RF/RF configuration and then scans 

quad one from its START to END values while performing peak finding.  

3SCAN - QUAD THREE SCAN 

Sets the instrument into the RF/RF/DC configuration and then scans 

quad three form it's START to END values while performing peak 

finding.  

PSCAN - PARENT SCAN 

Sets the instrument into the DC/RF/DC configuration. Sets quad three 

to its CURRENT value and scans quad one from its START to END values 

while performing peak finding.  

DSCAN - DAUGHTER SCAN 

Sets the instrument into the DC/RF/DC configuration. Sets quad one to 

it's CURRENT value and scans quad three from its START to END values 

while performing peak finding.  

NSCAN - NEUTRAL LOSS SCAN 

Sets the instrument into the DC/RF/DC configuration. It then scans 

quads one and three together. Both start at their respective START 

values and the scan proceeds with peak finding until quad one reaches 

its END value. The step size is controlled by the STEP value for quad 

one.  

1SCANS 

n 1SCANS - performs 1SCAN n times. n must be in the range 0-32767. 

This causes n quad one scans to be sequentially acquired and recorded 

on the disk.  

3SCANS 

n 3SCANS - performs 3SCAN n times. n must be in the range 0-32767. 

This causes n quad three scans to be sequentially acquired and 

recorded on the disk.  
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PSCANS 

n PSCANS - performs PSCAN n times. n must be in the range 0-32767. 

This causes n parent scans to be sequentially acquired and recorded 

on the disk.  

DSCANS 

n DSCANS - performs DSCAN n times. n must be in the range 0-32767. 

This causes n daughter scans to be sequentially acquired and recorded 

on the disk.  

NSCANS 

n NSCANS - performs NSCAN n times. n must be in the range 0-32767. 

This causes n neutral loss scans to be sequentially acquired and 

recorded on the disk.  

PARAMETER SCANNING 

The computer system can perform a type of data acquisition scan called 

a SWEEP for any device under its control. In a sweep a data point is 

recorded each time the current value of the selected device is 

incremented by its step size. The total number of data points taken 

is given by (END -START)/STEP and must not exceed 1024.  

SWEEP 

device SWEEP - scans the specified "device" from its START value to 

its END value recording the ion current each time the value of the 

device is incremented by STEP.  
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OSCILLOSCOPE DISPLAY FUNCTIONS 

The mass spectrometer system includes a display oscilloscope that 

enables the user to view the output of the detector preamplifier in 

real time. The X axis of the oscilloscope is driven by the computer 

and normally represents a mass axis. The computer can be used to 

select one of five gain factors to apply to the output of the 

preamplifier before displaying the ion current on the oscilloscope. 

The principle use of the oscilloscope is to give the user an immediate 

visual feedback when tuning up the instrument.  

SCOPE - OSCILLOSCOPE GAIN CONTROL 

n SCOPE - selects one on the five gains to apply to the ion current 

from the table below.  

     n    GAIN FACTOR 

------------------------- 

     0        256 

     1    64 

     2    16 

     3     4 

     4     1 

 

FAST SCANNING FUNCTIONS 

Fast scanning functions perform scanning operations for display on 

the oscilloscope. No data acquisition or storage is performed. Fast 

scanning functions operated as a background task, that is once started 

they continue to display data on the oscilloscope until specifically 

turned off or another fast scanning function is started. The terminal 

will remain active while a fast scanning function is in operation. 

The fast scanning operations use the same START, END and STEP values 

that are used when scanning with data acquisition.  

FSTOP - STOP OSCILLOSCOPE DISPLAY 

Halts any display on the oscilloscope screen.  

FSPEED 

n FSPEED - controls the scanning speed of all oscilloscope display 

functions. n is an arbitrary value between 1 and 32767. The larger 

the value of n the slower the scanning speed.  

F1SCAN 

Performs a quad one scan repeatedly for oscilloscope display.  
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F3SCAN 

Performs a quad three scan repeatedly for oscilloscope display.  

FPSCAN 

Performs a parent scan repeatedly for oscilloscope display.  

FDSCAN 

Performs a daughter scan repeatedly for oscilloscope display.  

FNSCAN 

Performs a neutral loss scan repeatedly for oscilloscope display.  

SPLIT SCREEN OPERATIONS 

Split screen functions allow the user to display up to five peaks 

side by side on the display oscilloscope. Split screen displays are 

a background task like the fast scanning functions and once started 

continue to display on the oscilloscope while the terminal remains 

active. There are five basic split screen operations corresponding to 

the five standard mass scanning modes (quad1, quad3, parent, daughter, 

and neutral loss). The user may assign between one and five masses to 

each split screen mode. In addition, the scope gain function to be 

used when displaying a given mass may also be specified. When 

activated the system will display a five amu region centered around 

each specified mass using the specified gain factor. Note that when 

a parent, daughter, or neutral loss split is activated the appropriate 

values for parent ions and neutral losses are extracted from the 

currently active parameter set as describe in the mass scanning 

section earlier. To set up all of these parameters an interactive 

routine called SPLITS is used.  

SPLITS - SPLIT SCREEN SETUP 

SPLITS activates a split screen setup editor. It displays the center 

mass and gain function for the five display window for each of the 

five scanning modes along with a brief menu of commands. In addition, 

a sixth set of parameters is display for a TUNE mode that will be 

explained later. A reverse video cursor will appear at the first enter 

for the quad 1 scan mode. This cursor can be moved to the different 

mass windows displayed on the screen using the arrow keys. To change 

the mass window selected by the cursor, enter the new value followed 

by a return. When a split screen display is activated it starts by 

displaying mass window 1, then mass window 2 and so on until it 

encounters a mass window whose value is set to zero. Thus, by setting 

mass window 4 to zero for quad 1 scanning mode only the first three 

mass windows will be displayed. In addition to the arrow keys SPLITS 

recognizes ten single character commands.  
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Z - ENTER ZERO 

Enter a zero for the mass window selected by the current cursor 

position.  

G - GO 

Activate the split screen display for the scan mode specified by the 

line the cursor currently is located on. When a scan mode is being 

actively displayed on the scope an asterisk is displayed next to the 

mode name to indicate which mode is active.  

A - AMPLIFICATION TOGGLE 

Toggle the gain factor for the mass window currently selected by the 

cursor. Each time A is pressed the gain will be advanced one through 

the sequence 256, 64, 16, 4, 1.  

< - SHIFT LEFT 

Increments the value in the mass window currently selected by the 

cursor 0.2 amu causing the peak to shift to the left on the display. 

This command will start the split screen display running if a Go 

command hasn't already been issued.  

> - SHIFT RIGHT 

Same as the shift left command above except that it decrements by 0.2 

amu causing the peak to move to the right.  

P - PARENT 

Allows the user to specify a new parent ion to be used for the daughter 

scan display.  

D -DAUGHTER 

Allows the user to specify a new daughter ion to be used for the 

parent scan display.  

M - IONIZATION MODE TOGGLE 

The ionization mode currently in effect is displayed at the upper 

righthand corner of the split screen display. This command toggles 

the system to the next ionization mode in the circular list EI, +CI, 

-CI, USR. The selected ionization mode remains in effect after exiting 

SPLITS.  

T - SELECT TUNE VALUES 

There is a sixth set of mass windows labeled TUNE. When a T is entered 

a split screen display is started for the scan mode specified by the 

line the cursor is currently on. However instead of using the mass 

windows specified for that mode the mass windows specified on the 

tune line are used. An asterisk is then displayed next to the active 
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scan mode and the on the TUNE line to indicate which scan mode is 

active and that it is using the TUNE parameters. The primary use of 

this function is to keep a set of mass windows in the TUNE set for a 

standard reference compound, thus making it easy for the user to 

quickly check on known reference peaks.  

Q - QUIT 

Exits from the SPLITS command.  

The SPLITS command is very powerful and somewhat complex. The easiest 

way to understand its operation is to experiment with it for a while 

using a familiar reference compound. 

 

.SPLITS - PRINT SPLIT SETTINGS 

Generates the same display as SPLITS without entering the interactive 

mode.  

SSAVE - SPLITS SAVE 

Copy the currently active splits settings into a reserved storage 

area on the disk.  

SGET - SPLITS GET 

Copy the splits setting from the disk area into memory making them 

active. Most often used to recall a set of default settings from the 

disk.  

1SPLIT 

Activate a quad 1 split screen display using the parameters setup 

with the SPLITS command.  

3SPLIT 

Activate a quad 3 split screen display using the parameters setup 

with the SPLITS command.  

PSPLIT 

Activate a parent split screen display using the parameters setup 

with the SPLITS command.  

DSPLIT 

Activate a daughter split screen display using the parameters setup 

with the SPLITS command.  
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NSPLIT 

Activate a neutral loss split screen display using the parameters 

setup with the SPLITS command.  

XSCANS 

 

As an additional tuning aid there is a special class of fast scanning 

operations called XSCANS. They operate similarly to FSCANS. However 

instead of utilizing the STEP value specified in the parameter table 

the mass scanning DACs are incremented by one. These scans operated 

3 to 5 times slower than fast scans and are primarily intended to be 

used to examine small mass ranges in great detail. 

 

X1SCAN 

 

Performs a quad one xscan repeatedly for oscilloscope display. 

 

X3SCAN 

 

Performs a quad three xscan repeatedly for oscilloscope display. 

 

XPSCAN 

 

Performs a parent xscan repeatedly for oscilloscope display. 

 

XDSCAN 

 

Performs a daughter xscan repeatedly for oscilloscope display. 

 

XNSCAN 

 

Performs a neutral loss xscan repeatedly for oscilloscope display. 
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SOFT KNOBS 

In order to place the numerous computer controlled devices under a 

more convenient form of control for the user a set of four knobs have 

been supplied. These four knobs may be connected by the computer to 

any device in the system.  

KNOBS - ACTIVATE SOFTKNOBS 

This command activates the softknobs. It displays ten sets of knob 

definitions, that is which knob is assigned to which device. These 

knob definitions are numbered 0 - 9. To select a knob definition enter 

its number. The device assignments and values for each knob will then 

be updated to reflect the new definition. The values of the devices 

the knobs control are continuously updated on the terminal display. 

To exit from the knobs display enter a Q. Note that the softknobs 

will have no effect on the system unless the KNOBS command is active.  

KSET - DEFINE A KNOB SET 

m KSET dev1 dev2 dev3 dev4 - defines a new set of devices for knobs 

definition n. Dev1 is assigned to knob one, dev2 is assigned to knob 

two and so on. The names of four device must always be entered. If a 

knob is to be inactive in a definition assign it to the NUL device. 

Example: 3 KSET Q1 Q2 Q3NUL causes knobs definition three to assign 

Q1, Q2 ,Q3 to knobs one, two, and three respectively. Knob four is  

assigned to the NUL device and is thus inactive. 

 

.KNOBS - DISPLAY KNOBS DEFINITIONS 

.KNOBS - displays the knob definitions without activating the knobs.  

KSAVE 

Saves the current set of knobs definitions so that they can be 

recovered if changes are made.  

KGET 

Recovers the previously saved set of knob definitions.  
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DISPLAY FUNCTIONS 

All display functions use the last scan acquired or the scan selected 

as the current scan by the SS command from the current experiment 

specified by the SELECT command. The data in a scan can be displayed 

in two forms: numeric or graphic. The DLIST command generates a 

numeric display. The DISP command generates a graphical display. In 

the graphical displays, the data is normalized. That is the top edge 

of display is equivalent to the largest point in the data set. The 

raw value of the point is always displayed at the top righthand edge 

of the plot. The intensity axis of the plot may be on either a linear 

or a logarithmic scale. 

 

DLIST - DATA LIST 

Displays the x value (mass or voltage), raw intensity, normalized 

intensity, and flag values for each data point in the scan. A flag 

setting of 1 indicates the mass peak width was greater than the 

maximum limit in effect at the time of acquisition. DLIST will pause 

each time the terminal screen becomes full. Strike the space bar to 

continue the display or hit return to exit from DLIST.  

LIN - LINEAR DISPLAY 

Selects a linear intensity scale for graphical displays. This is 

indicated on a plot by tic marks on the y axis at 25%, 50%, 75%, and 

100%.  

LOG - LOGRITHMIC DISPLAY 

Selects a logarithmic intensity scale for graphical displays. This 

scale covers three orders of magnitude indicated by the tic marks at 

3.000, 2.000, 1.000.  

DISP - DISPLAY 

Generates a graphical display of the data in the scan. For voltage 

sweeps, a single box will be displayed, and the data will be plotted 

as a continuous curve. For a mass spectrum the x axis will be divided 

up into segments no more than 200 amu long (maximum of 5). The data 

will then be plotted as a histogram. The user can over-ride the 

automatic formatting of mass spectral data using the commands 

described below.  

DSET - SET DISPLAY PARAMETERS 

There are three parameters that control the format mass spectral 

information is displayed. Start mass - is the first mass at which to 

start displaying the spectrum. Amu/field - is the number of amu to 
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display in each box plotted on the screen. #Fields - is the number of 

boxes into which the mass spectrum is divided. Each one of these 

values has a status associated with it. Either Auto or Preset. In the 

Auto mode the computer selects the most optimal value for the 

parameter. In the Preset mode the user specifies the values the 

computer is to use. DSET will display the settings of all of the 

parameters then ask the user if he want to change each one by 

displaying a ? next to the value. A response of -1 sets a parameter 

into the auto mode, a return leaves the parameter unchanged, and 

entering a new value sets the parameter to that value. Remember that 

the first two values are in terms of mass and must be entered including 

the tenths place. i.e 30.0 not 30 for a 30 amu setting.  

.DSET - DISPLAY DISPLAY PARAMETERS 

Displays the settings of the display parameters.  

OPLOT - OVER PLOT 

Displays the current scan in graphical form without erasing the 

display or plotting axis. This command is useful for comparing data 

by causing one scan to be displayed on top of another. Note that all 

data displayed with OPLOT is normalized to the maximum value of the 

first data set plotted.  

DTIC - DISPLAY TIC 

 

n1 n2 DTIC - plots the total ion current (TIC) for scans n1 thru n2. 

Only the TIC for scans of the same type as scan n1 will be plotted. 
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DATA MANIPULATION 

 

ADD 

n1 n2 ADD - add scans n1 and n2 together and create a new scan. All 

masses will be rounded to the nearest nominal mass. The new scan will 

be appended to the end of the last experiment.  

SUM 

 

n1 n2 SUM - sums all scans between n1 and n2 of the same type as scan 

n1. All masses are rounded to the nearest nominal mass. A new scan is 

created and added to the end of the last experiment. 

 

SUB 

 

n1 n2 SUB - subtract scan n2 from scan n1. All masses are rounded to 

the nearest nominal mass. The new scan of the difference between n1 

and n2 is added to the end of the last experiment. Any negative peak 

intensities are set to zero. 
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METHODS AND SEQUENCES 

 

METHODS 

A METHOD is a series of instructions that are stored on the disk and 

can be executed with a single command. A method consists of 16 lines 

of text up to 64 characters in length. Up to 50 methods may be defined, 

numbered 0-49. Methods can be nested, that is one method can initiate 

the execution of another method. However, under no circumstances 

should a method try to execute itself. Death and destruction will 

surely follow. Any command that can be entered from the terminal can 

be used in a method. However, any text strings such as experiment 

names must be terminated with the \ character. Comments may also be 

included in a method. Comments are used only for reference and 

identification purposes and do not affect the execution of a method. 

Comments enclosed in { } are printed out each time the method is 

executed and comments enclosed in ( ) are ignored. When used the ( ) 

and { } must be separated from any text by at least one space. A 

useful command when printing text from a method is CR which causes 

the terminal to start printing on a new line. There are three command 

used to create, display, and execute methods all of which must be 

proceeded by a method number. These are MED, MLIST, and METHOD.  

MED - METHOD EDITOR 

n MED - Selects method n and activates the method editor. The editor 

displays the contents of the method with the method number at the top 

of the screen. The contents of the method can be changed with a series 

of editor commands. These commands are entered and scroll by on only 

the four lower lines of the terminal screen. The contents of the 

methods are always displayed on the upper portion of the screen. Any 

changes will appear in the method listing immediately. Most of the 

editor commands are single letters, all of the commands are terminated 

with a return.  

METHOD EDITOR COMMANDS 

n T - Select line n as the current line. 

P text - Put text on current line, replacing any existing text. 

U text - Put text on line Under the current line moving all other 

lines down. The last line is lost. 

X - Delete the current line moving all remaining lines up. 

F text - Find the first occurrence of text starting from the current 

cursor position. Can be repeated by just typing F. 

E - Erases the last text string found with the F command. 
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R text - Replace the last string found with the F command with text. 

D text - Delete the next occurrence of text. 

I text - Insert text at the current cursor position. Any text pushed 

off the end of a line is lost. 

TILL text - Deletes all text on a line from the current cursor position 

through and including the string text. 

WIPE - Erase all the text in the method. 

Q - Quit. Exit the method editor. 

 

MLIST - METHOD LIST 

n MLIST - displays the text for method n.  

MCOPY - METHOD COPY 

n1 n2 MCOPY - copies method n1 into method n2. 

 

MDIR - METHOD DIRECTORY 

 

MDIR - displays the first line of all 50 methods. It is considered 

good form to make the first line of a method non-printing comment to 

identify the function of the method.  When MDIR is displayed on the 

terminal it will pause each time the screen is full. Strike the space 

bar to continue the method directory or a return to abort the 

directory. 

 

METHOD 

 n METHOD - Causes method n to be executed.  

SEQUENCES 

A sequence is a series of methods each of which is repeated for 

specified number of seconds before proceeding to the next method. The 

primary application of sequences is GC/MS experiments. Up to 16 

sequences can be defined at one time, numbered 0-15. A sequence can 

contain up 16 methods. Each method can be executed from 1 to 65535 

seconds. Sequences can be nested, that is for example sequence A may 

contain a method that causes the execution of sequence B. One should 

use caution when nesting sequences and methods that a recursive system 

is not developed. A recursive system is one that ends up executing 
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itself over and over again until world war three or the computer 

system crashes. If less than 16 methods are to be executed in a 

sequence the duration of the method following the last method to be 

executed must be set to zero.  

SED - SEQUENCE EDITOR 

n SED -Display sequence n and activates the sequence editor. Use the 

arrow keys to move the cursor to the method number or duration you 

wish to change. Enter the new value followed by a return. Enter a Q 

to exit the editor.  

SLIST - SEQUENCE LIST 

n SLIST - Displays the method numbers and durations for sequence n.  

SEQUENCE 

n SEQUENCE - Causes sequence n to be executed. Execution of a sequence 

can be terminated after the completion of a method by entering a Q. 

The current method be finished before the Q takes effect.  
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MULTIPLE REACTION MONITORING 
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MASS CALIBRATION 

 

Quads one and three each have an interpolation table used to convert 

mass values (amu) to the digital-to-analog (DAC) values which are 

used to control the quadrupole power supplies. These tables contain 

up to sixteen masses and their corresponding DAC values. The control 

system uses these entries and a linear interpolation algorithm to 

make mass assignments. To set up these interpolation tables the user 

must enter a list of calibrations masses to be used and then perform 

the calibration function while a reference compound is in the mass 

spectrometer. 

 

CALIBRATION MASSES 

The user may store five sets of calibration masses on the disk. The 

calibration masses are not entered into either interpolation table 

until the CALIBRATE functions is performed.  

CGET 

n CGET - Make calibration mass set n active by loading it from disk 

into memory.  

CSAVE 

n CSAVE - Store the active calibration masses into set n on the disk.  

.CAL - DISPLAY CALIBRATION MASSES 

.CAL - displays the active calibration masses.  

CALSET 

CALSET - Allows the user to enter a new list of calibration masses. 

This new list becomes the active set of calibration masses. Each time 

a "?" is displayed a new calibration mass can be entered. To enter 

less than 16 masses enter a 0 after the last desired mass. When  the 

entry of new values is completed the list of new calibration masses 

is displayed.  

INTERPOLATION TABLE OPERATIONS 

 

LINCAL 

n LINCAL - forces a linear calibration into the interpolation tables 

for quads one and three. The value n is the upper mass limit of 

quadrupole control electronics in use.  
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.ITABLE - DISPLAY INTERPOLATION TABLE 

n .ITABLE - Displays the mass and dac entries in the interpolation 

table for quad n, where n can be 1 or 3.  

ISAVE 

ISAVE - stores both interpolation tables on the disk. This is used to 

save a calibration so that it is not lost when the computer is turned 

off or reloaded.  

IGET 

IGET - recovers the interpolation table values stored on the disk 

with the ISAVE command.  

CALIBRATE 

n CALIBRATE - calibrates quad n (1 or 3) by the following procedure. 

A calibration mass is selected and the system pauses for the user to 

adjust the multiplier gain if necessary. A mass window 4 amu wide is 

scanned over the peak ten times. After each scan the DAC value on 

intensity of the peak is displayed. An average DAC valued is then 

displayed and the user has a choice of accepting or rejecting the 

value. If rejected the averaging step is repeated. If accepted the 

system proceeds to the next calibration mass. Note that the 

calibration scans are performed at the currently selected scan rate. 

For optimal calibrations the scanning rate should be the same for the 

calibration and the data to be acquired.  
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FLOPPY DISK OPERATIONS 

 

The floppy disk drive attached to the system can used to store 

parameter set, methods and other user configured information. 

Information that is normally stored on the fixed disk can be transfer 

to or from the floppy disk by the commands described in this chapter. 

The information on the floppy disk cannot be accessed directly, it 

must first be transferred back to the fixed disk. All of the transfer 

commands are prefixed with a } or { to indicate the direction of 

transfer. } indicates a transfer from the fixed disk to the floppy, 

while { indicate a transfer from the floppy to the fixed disk. 

 

}SPLITS 

}SPLITS - transfers the splits settings stored on the fixed disk with 

the SSAVE command to the floppy disk.  

{SPLITS) 

 

}SPLITS - transfers the splits settings from the floppy disk to the 

reserved storage area on the fixed disk. These setting do not become 

active until a SGET command is issued. 

 

}KNOBS 

 

}KNOBS - transfers the current knob set definitions to the floppy 

disk. 

 

{KNOBS 

 

{KNOBS - transfers a set of knob definitions from the floppy replacing 

the current set of knob definitions. 

 

}ITABLE 

}ITABLE - transfer the calibration interpolation table stored on the 

fixed disk with th ISAVE command to the floppy disk.  
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{ITABLE 

 

{ITABLE - transfers the calibration interpolation table from the 

floppy disk to the reserved storage area on the fixed disk. These 

calibration values are not active until an IGET command is issued. 

 

}PARAM 

n }PARAM - transfers parameter set n to the floppy disk. 

 

{PARAM 

n {PARAM - transfers parameter set n from the floppy to the fixed 

disk. The parameter set is not active until a PGET command is issued 

for that parameter set. 

 

}PARAMS 

 

}PARAMS - transfers all 16 parameter sets to the floppy. 

 

{PARAMS 

{PARAMS - transfers all 16 parameter sets from the floppy to the fixed 

disk. 

}METHOD 

n }METHOD - transfer method n from the fixed disk to the floppy disk.  

{METHOD 

n }METHOD - transfer method n from the floppy to the fixed disk.  

}METHODS 

n1 n2 }METHODS - transfer methods n1 thru n2 to the floppy disk. 

 

{METHODS 

n1 n2 {METHODS - transfer methods n1 thru n2 from the floppy to the 

fixed disk.  
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MISC 

 

HELP 

Online help is supported in the following manner. Entering the command 

HELP displays instructions on how to use the help facility. HELP 

"word" displays help information for the function "word". To find out 

what words help recognizes type HELP WORDS.  

TRANSMISSION 

n TRANSMISSION - computes the transmission of the instrument at mass 

n. This is done by setting quads 1 and 3 to the desired mass and 

measuring the ion current in the DC/RF/DC mode. Then quad 1 is set to 

50% of quad 3 and the ion current is measured in the RF/RF/DC MODE. 

The ratio of the DC/RF/DC ion current to the RF/RF/DC ion current is 

computed and displayed. An example of this command follows.  

219.0 TRANSMISSION 

   21876    89678  TRANSMISSION AT MASS 219.0 = 24.3 % 

The first number is the ion current measured in the DC/RF/DC mode and 

the second number is the ion current in the RF/RF/DC mode. If either 

of these number falls below 2000 or above 1,000,000 the calculated 

value for the trans mission may be unreliable. 

 

PTATRANS 

PTATRANS - checks the transmission at masses 69.0, 131.0, 219.0, and 

502.0. This is useful when perflurotributlyamine is being used as a 

calibration compound.  
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Notes on Migration to MS Word 

For easy of archiving the original text was migrated into MS Word in 

February 2021. The migration attempted to preserve the look and feel 

of the original document while not creating excess effort. 

The original text was written for a Text Formatter called ReadiWriter 

that used commands embedded into simple text to direct the formatting.  

The formatting was some what specific to the printer being used at 

the time, an Epson MX series dot-matrix printer that had only one 

font size along with bold, italics and underlining highlights. 11pt 

Courier New font was used as being fairly close to the original font. 

The only additional highlight used was a slight increase in the font 

size of some headings. 

There were a surprising number of typos and other small errors in the 

text, many of which were corrected. This document is not meant to be 

an exact reproduction of the original, rather it is an attempt to 

preserve the original information and look and feel. No effort was 

made to clean up or enhance the scanned figures. 

 


