

ABSTRACT

DEVELOPMENTS IN TRIPLE QUADRUPOLE MASS SPECTROMETRY

I. A Distributed Processing Control System

II. Screening Applications for Fuel Analysis

by

Carl Alan Myerholtz

A data acquisition and control system for a triple quadrupole

mass spectrometer has been developed using several microprocessors in

a distributed processing system. This system includes four processors,

one acting as the system master controlling three slave processors.

In such a distributed processing system each processor is assigned a

specific task. Critical to this application is the allocation of the

task of data acquisition, ion path control, and peak finding to

separate slave processors. This modular approach leads to a system

where each major section of the instrument has its own dedicated

intelligence.

This parallel processing system allows operations that are often

implemented in hardware (for speed considerations) to be performed in

software. For an instrument operating in the research environment,

the flexibility of a primarily software based system is a great

benefit. In this implementation both the hardware and the software

become more modular, making it easier to implement and test different

data acquisition, peak finding, and scanning algorithms.

The use of triple quadrupole mass spectrometry, an MS/MS

technique, to detect selected species in middle distillate fuels has

been examined. Nonparaffinic components, which are mainly aromatic

and heteroaromatics containing nitrogen or sulfur, contribute to the

formation of undesirable deposits during the storage and combustion

are of particular interest where aviation fuels are concerned.

Collision-activated dissociation (CAD) spectra were obtained for

reference compounds from several heteroatom-containing compound

classes. These included the thiophenes, thiols, nitrobenzenes,

pyridines and anilines. The alkylbenzenes were examined in addition

to heteroatom-containing species. The CAD results were used to select

screening reactions for each compound class. The effectiveness of

these screening reactions was demonstrated by identifying the presence

of various species in samples of Jet A aviation fuel, a shale oil

derived fuel and No. 2 diesel fuel. Triple quadrupole mass

spectrometry can be used to rapidly identify a number of different

components in middle distillate fuels. This information can be an aid

to studies of fuel composition and stability.

DEVELOPMENTS IN TRIPLE QUADRUPOLE MASS SPECTROMETRY

I. A Distributed Processing Control System

II. Screening Applications for Fuel Analysis

by

Carl Alan Myerholtz

A DISSERTATION

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Department of Chemistry

1983

ii

Copywrite by

Carl Alan Myerholtz

1983

iii

ACKNOWLEDGMENTS

I would like to thank Dr. Chris Enke under whose guidance this work

was performed, for providing an environment of freedom and challenge.

I thank the fellow members of the research group and the department

for making Michigan State a unique place to work. I would like to

recognize Dan Sheffield for is contribution to the quality of many of

the figures presented here.

Financial support for myself was provided by grants from the National

Aeronautics and Space Administration (NASA) and Extranuclear Inc.

Financial support for the TQMS instrumentation project was provided

by the Office of Naval Research (ONR).

Finally I would like to express my appreciation to my many friends

and my parents for their support during my stay in Michigan. I would

especially like to thank Uncle Bruce, Tom Atkinson, George Lucas, the

makers of Pepsi-Cola, and the people at Bangaway Engineering for

helping me preserve my sanity and survive this experience.

iv

Table of Contents

ACKNOWLEDGMENTS ... iii

Table of Contents .. iv

List of Tables .. vi

List of Figures .. vii

Part I. A Distributed Processing Control System .. 1

Chapter 1 : INTRODUCTION .. 2

ORGANIZATION .. 3

INTRODUCTION TO THE RESEARCH 4

Chapter 2 : Distribution and Coordination of Tasks ... 8

INTRODUCTION ... 10

DISTRIBUTED SYSTEMS .. 11

SCHEMES OF PARTITIONING .. 12

RELATIONSHIPS AMONG TASKS 14

ADVANTAGES OF MODULARITY 18

INTERPROCESSOR COMMUNICATION REQUIREMENTS 20

SOFTWARE CONSIDERATIONS .. 22

SYSTEM DESIGN CONSIDERATIONS 25

REFERENCES ... 27

Chapter 3 : INTERPROCESSOR HARDWARE OVERVIEW ... 28

REFERENCES ... 33

Chapter 4 : An Integrated Software System ... 34

SOFTWARE SELECTION CONSIDERATIONS 36

SELECTION OF THE FORTH LANGUAGE SYSTEM 38

ADAPTING FORTH TO A DISTRIBUTED ENVIRONMENT 44

DIRECTING SLAVE PROCESSORS 47

MASTER PROCESSOR FORTH EXTENSIONS 49

RESULTS AND CONCLUSIONS .. 52

REFERENCES ... 55

Chapter 5 : A Distributed Processing Control System .. 56

DESIRABLE CONTROL SYSTEM FEATURES 62

DISTRIBUTED PROCESSING SYSTEMS 66

PARTITIONING OF TASKS .. 68

v

MICROPROCESSOR SYSTEM HARDWARE 71

INTERPROCESSOR HARDWARE .. 73

SOFTWARE ... 77

CONTROL SYSTEM DESIGN CONSIDERATIONS 81

IMPLEMENTATION OF TQMS CONTROL FUNCTIONS 84

USER INTERFACE ... 92

USER PROGRAMABILITY ... 101

SUMMARY ... 105

REFERENCES .. 108

Part II. Screening Applications for Fuel Analysis .. 110

Chapter 6 : Screening Aviation Fuels for Thiophenes .. 111

ABSTRACT .. 113

EXPERIMENTAL SECTION .. 115

RESULTS AND DISCUSSION .. 116

CONCLUSIONS ... 128

ACKNOWLEDGMENTS ... 128

REFERENCES .. 129

Chapter 7 : Screening Fuels for Selected Species ... 130

ABSTRACT .. 132

EXPERIMENTAL .. 138

RESULTS AND DISCUSSION .. 139

CONCLUSIONS ... 152

ACKNOWLEDGMENTS ... 153

REFERENCES .. 154

Chapter 8 : COMMENTS AND SUGGESTIONS ... 155

APPENDIX A .. 161

vi

List of Tables

Table 2.1 Advantages of Distributed Processing Systems 13

Table 2.2 Interprocessor Communication Modes 21

Table 2.3 Summary of Distributed Processing System Design Goals 26

Table 4.1 Interprocessor Memory Access Words 46

Table 4.2 User Extensions to FORTH and the Target for the master processor

 53

Table 5.1 Desirable Attributes for a Control System 63

Table 5.2 Advantages of Distributed Processing Systems 67

Table 5.3 Modes and Paths of Interprocessor Communication 75

Table 5.4 TQMS devices and their mnemonic names 83

Table 5.5 Selected control system commands and their function. 102

Table 6.1 CAD spectra of reference compounds 118

Table 6.2 Summary of characteristic ions 120

Table 6.3 Thiophenes, reactions, retention times 127

Table 7.1 Daughters of Reference Compounds. 141

Table 7.2 Summary of Screening Reactions 144

vii

List of Figures

Figure 1.1 Compound Classes Studied...................................... 6

Figure 2.1 Loosely-coupled Tasks.. 16

Figure 2.2 Tightly-coupled Tasks.. 16

Figure 2.3 System with Loosely and Tightly Coupled Tasks................ 16

Figure 3.1 Interprocessor Communication Path Block Diagram.............. 31

Figure 4.1 FORTH programming examples illustrating how words build into

more and more powerful commands. 41

Figure 4.2 Sample Multiprocessor Program................................ 51

Figure 5.1 Distributed Intelligence..................................... 61

Figure 5.2 Multiprocessor Topologies.................................... 69

Figure 5.3 Modular Hardware System...................................... 72

Figure 5.4 Distributed Processing Modules............................... 74

Figure 5.5 Sample FORTH Program... 80

Figure 5.6 TQMS Control System Block Diagram............................ 86

Figure 5.7 Parallel Processing Timing Diagram........................... 91

Figure 5.8 Parameter Editor Display..................................... 95

Figure 5.9 Softknobs Functional Diagram................................. 99

Figure 5.10 Mass spectrometry programming examples..................... 103

Figure 6.1 Thiophene Decomposition Mechanisms.......................... 119

Figure 6.2 45 Neutral Loss from Jet A and Shale oil.................... 122

Figure 6.3 Raw Spectra of Jet A and Shale oil.......................... 123

Figure 6.4 97+ Parent scans of Jet A and Shale oil..................... 124

Figure 6.5 Multiple Reaction Monitoring Chromatograms.................. 126

Figure 7.1 TQMS instrument block diagram............................... 135

Figure 7.2 TQMS modes used in Mixture analysis......................... 136

viii

Figure 7.3 Raw MS of Jet A, Shale Oil and Diesel fuel.................. 145

Figure 7.4 Parents of 97+ for Jet A, Shale Oil, Diesel................. 146

Figure 7.5 Parents of 91+ for Jet A, Shale Oil, Diesel................. 148

Figure 7.6 Loss of 54 from Jet A, Shale Oil, Diesel.................... 149

Figure 7.7 Loss of 46 from Jet A, Diesel............................... 150

Figure 7.8 Loss of 27 and 17 from Shale Oil............................ 151

Figure 8.1 Compound Classes for Future Study........................... 158

1

Part I. A Distributed Processing Control

System

2

2

Chapter 1 : INTRODUCTION

3

3

ORGANIZATION

The research covered in this dissertation spans two different

areas and the dissertation is divided accordingly. Part I is a

description of several instrumentation developments and Part II is a

description of the application of triple quadrupole mass spectrometry

(TQMS) to hydrocarbon fuel analysis. Part I is made up of Chapters 2

through 5. instrumentation developments and applications. Chapters 2

thru 4 deal with the development of the hardware and software of a

distributed processing system for real-time instrument control. The

development of a control system for a triple quadrupole mass

spectrometer using this distributed processing system is discussed in

Chapter 5. Chapters 2,4 and 5 are presented in manuscript form.

Applications of triple quadrupole mass spectrometry to the

screening of hydrocarbon fuels for selected species are described in

Chapters 6 and 7, which form Part II of this dissertation. These

chapters are also presented in manuscript form. Chapter 8 contains

comments and suggestions of area for further investigation.

The user's manual for the triple quadrupole mass spectrometer

control system is included in Appendix A. This document provides a

more complete description of the capabilities of the control system

than could have been covered in the manuscript format of Chapter 5.

4

4

INTRODUCTION TO THE RESEARCH

The overall objective of the author's research was the

development and advancement of laboratory instrumentation. A related

goal was to demonstrate the application of TQMS to the detection of

selected species in complex mixtures.

Instrument Control System Development

The main focus of the instrumentation work was the development

of a distributed processing system for real-time instrument control.

This work was a collaborative project with Mr. Bruce Newcome. The

results and application of this work is described in Chapters 2 thru

5. The duration, complexity, and sophistication of this project make

the separate identification of the author's work and that of Mr.

Newcome very difficult. On the first level, it is very simple; all of

the software was written by the author, while all of the hardware was

developed by Mr. Newcome. However, in the synergism generated by many

a late night discussion, many of the author's suggestions were

incorporated in the final hardware designs and many of Mr. Newcome's

suggestions were incorporated into the software system. In other

words, it was a real team effort in the best sense of that phrase.

Nevertheless, consistent with our primary responsibilities, the

system descriptions contained in this dissertation concentrate on the

software aspects of the instrumentation developments.

Chapter 2 is an introduction to distributed processing and some

of the special needs of real-time instrument control systems. Chapter

5

5

3 is a brief overview of the hardware system developed as part of the

distributed processing project. In Chapter 4, the development of an

integrated software package for program development and operations in

a distributed processing environment are discussed. Software for

laboratory instrumentation is an area often overlooked by scientists

in the field. Many people fail to look at software and programming

languages as tools. This is somewhat due to the fact the software is

so flexible it can be bent into just about any shape needed. The

suitability of a tool for a job often determines whether or not it is

practical to undertake a given task.

Laboratory instrumentation has made a great step forward by

moving from the strip chart recorder to the microcomputer for data

acquisition. However, the microcomputer acts as only a glorified strip

chart recorder if data acquisition is its only function. The next

real breakthrough in laboratory instrumentation needs to be and will

be in the software field. It is important when developing new tools

for laboratory automation that software capabilities be developed

along with improved hardware capabilities.

Fuel Analysis Applications

Chapters 6 and 7 describe the application of triple quadrupole

mass spectrometry to screening hydrocarbon fuels of selected species.

These species are illustrated in Figure 1.1.

6

6

Figure 1.1 Compound Classes Studied

7

7

Heteroatom containing species are present in low-levels in most

hydrocarbon based fuels. It has been demonstrated that some of these

species are detrimental to the storage and thermal stabilities of the

fuel. The ability to rapidly identify which species are present in a

fuel sample would be a substantial aid to fuel stability studies. The

separatory power of TQMS can be used to selectively detect the

presence of many, if not all heteroatom-containing species in complex

hydrocarbon mixtures. The paper presented in chapter 6 is a detailed

study of the determination and confirmation of a screening procedure

for thiophenes in jet aircraft fuels. Chapter 7 is intended as an

introduction to the application of TQMS for fuels screening and

describes the selection and implementation of screening procedures

for several classes of compounds.

8

Chapter 2 : Distribution and Coordination of

Tasks

9

A Distributed Processing System for Real-Time Instrument Control

1. Distribution and Coordination of Tasks

Carl A. Myerholtz

Bruce H. Newcome

Christie G. Enke

Department of Chemistry

Michigan State University

East Lansing, MI 48824

10

INTRODUCTION

In recent years advances in computer technology have greatly

increased the power and sophistication of mini- and microcomputer

systems, while at the same time their cost has been dramatically

reduced. As a result, the use of small computer systems in the

laboratory for instrument control applications has expanded greatly.

Laboratory computer systems were initially used principally to perform

data acquisition and preliminary data reduction functions, often

acting as little more than intelligent strip chart recorders. As the

performance/cost ratio increased, small computers were incorporated

directly into laboratory instruments and took on increasing

responsibility for control operations such as temperature programming

and scan generation. In addition, the data acquisition and reduction

functions increased in sophistication. The results of this evolution

are recent-generation instruments which incorporate real-time control

and data acquisition systems and which work interactively with the

operator to optimize the data resulting from an experiment. Ideally

these systems control as many instrument parameters as practical and

automatically record these parameters along with the acquired data to

create a complete experimental record. However, as powerful as these

small processors are, the demands of high speed data acquisition and

instrument control can exceed the processing capabilities of a single

processor. It is important for instrument control systems to advance

beyond these limitations so that they can be applied to larger and

11

more complex instruments where the need for increasingly intelligent

instrument control is extremely great.

DISTRIBUTED SYSTEMS

There are several approaches that can be taken to implement

advanced control systems with higher performance than is commonly

seen today. One solution to this problem is the development of

specialized hardware to solve a specific problem. This approach has

several drawbacks among which are the time needed to develop and test

the hardware and the difficulty in adapting specially tailored

hardware to new experimental demands. A second approach is to employ

bigger and faster computer systems that are capable of executing

control functions and processing information more rapidly than their

predecessors. A problem with this approach is that the increase in

computing power becomes more expensive as the level of performance

increases. An alternate solution is the use of more than one processor

in a system to expand the amount of computing power available to the

process. This results in a distributed processing environment where

each processor is a assigned a specific task or set of tasks to

perform.

Systems utilizing more than one processor typically fall into

one of two classes, distributed processing systems and multiprocessing

systems. In a distributed processing system, the work load is spread

over several processors by assigning a set of tasks to each processor.

The processors are not necessarily identical; each may incorporate

12

enhancements such as special interfaces or numeric coprocessors to

enable them to perform their allotted tasks. In a multiprocessing

system the work load is spread over several "equal" processors by

assigning tasks to any unoccupied processor. A number of the

advantages of distributed processing systems are listed in Table 2.11.

SCHEMES OF PARTITIONING

Partitioning tasks into separate processors takes a variety

forms depending on the functions being implemented and the criteria

used to separate tasks. Three of the major forms of task partitioning

are: horizontal partitioning, vertical partitioning, and partitioning

based on data access2. Two tasks can be horizontally partitioned if

they can be executed without regard to order or can be executed

concurrently. Vertical partitioning involves the separation of tasks

that have predecessor-successor relationships. These relationships

may arise from data dependency or control flow considerations.

Partitions based on data access separate tasks by what data they

operate on. Temporal order, control and direction of data flow are

not considered. Since most tasks involved in real-time instrument

control have some form of predecessor-successor relationship, efforts

in this project were directed toward developing a distributed

processing system utilizing vertical task partitioning. This required

the development of efficient communication links between the

processors.

13

Table 2.1 Advantages of Distributed Processing Systems

Faster Execution

• Parallel execution

• Less time spent in "overhead"

• Simpler addition of hardware controllers and processors

Independent Task Execution

• Non-interference of tasks

• Elimination of task interleaving programs

• Elimination of priority assignment programs

• Simpler task program modification

Modularity of Hardware and Software

• Consolidation of related tasks

• Simpler extension of instrument capability

• Simpler debugging and troubleshooting

14

RELATIONSHIPS AMONG TASKS

Tasks in a distributed processing system can be of several forms,

terminal, loosely-coupled, or tightly-coupled. The main differences

among these types of tasks are their degree of interaction with other

tasks and the time scale of the interaction. It is important not to

confuse the discussion of loosely and tightly coupled tasks in a

distributed processing system with loosely and tightly coupled

communication between processors in a multiple processor system.

Loosely-coupled processor systems use shared peripherals to pass

messages, while tightly-coupled systems use shared memory to pass

messages3.

Once a terminal task is started, no interaction with the other

processors in the system is necessary until the task is completed.

The size and complexity of a terminal task is such that only one

processor is needed to perform the task. Many computer systems today

have some distributed processing characteristics as the result of the

use of what are often described as intelligent peripherals.

Intelligent peripherals are used to off-load terminal type tasks from

the main processor. Most intelligent peripherals owe their

intelligence to small microprocessor systems that are used to control

the peripheral. A common example of this is the dot-matrix printer

which incorporates microprocessor control with a large communications

buffer. The main computer and the microprocessor in the printer form

a simple two-processor distributed system. The main processor can

15

transfer data to be printed to the control microprocessor, which can

then print the data without further intervention from the main

processor. This is a good example of a terminal type task. The duration

of the task is on the order of seconds or minutes and, once started,

little or no communication with other processors in the system is

necessary.

Loosely-coupled tasks involve more interaction between tasks on

separate processors. These tasks are often components of a task the

system is performing instead of separate independent functions as in

the case of terminal tasks. Figure 2.1 illustrates a two-processor

system performing loosely-coupled tasks. Processor one's task is to

acquire 100 data points at some fixed sampling rate.

When 100 points have been acquired they are transferred to

processor two. After the transfer is completed processor one is free

to start acquiring the next set of 100 data points. During this time

processor two writes the data to a disk and is ready to receive the

next set of points before processor one has completed acquisition of

the second set of points. Loosely-coupled tasks often require

interaction between tasks on the millisecond time scale.

Tightly-coupled tasks are similar to loosely-coupled tasks;

however, the subtasks each processor is performing form a smaller

portion of the overall task being performed by the system. More

coordination between tasks is needed and must take place on a shorter

time scale. A single-processor system is compared to a two-processor

system performing a set of tightly coupled tasks in Figure 2.2. This

16

Figure 2.1 Loosely-coupled Tasks

Figure 2.2 Tightly-coupled Tasks

Figure 2.3 System with Loosely and Tightly Coupled Tasks

17

example involves an experiment that requires that a voltage be sent

to a DAC a value be measured, a new voltage calculated, the DAC be

updated, and so on. Figure 2.2a illustrates this set of tasks

implemented on a single processor system. Figure 2.2b demonstrates

how these tasks might be divided between two processors in a tightly-

coupled system to increase the sampling throughput. Processor one is

assigned the task of controlling the DAC, while processor two is

dedicated to acquiring the data. When processor one has set the DAC

to a new value, processor two may begin to acquire a data point. At

the same time processor one may begin computing the next voltage to

send to the DAC so that when acquisition of the first data point is

completed a new value may be immediately send to the DAC and the whole

process repeated again. Tightly-coupled tasks often require

interaction among tasks on the microsecond time scale.

Distributed processing systems can be designed to handle any

task type or combination of task types, the primary differences being

the amount and speed of the communication needed between tasks on

different processors. Figure 2.3 illustrates how, in a distributed

system, three processors can interact with each other while performing

both loosely and tightly coupled tasks. Processors one and two form

a two-processor system, executing tightly-coupled tasks like that

shown in Figure 2.2b. Processor three executes a task which stores

the data on a disk. That task is loosely coupled to the operation

being performed by processors one and two. The resulting system is

much like the system described in Figure 2.1. Processors one and two

execute tightly-coupled tasks to perform the data acquisition function

18

that processor one in Figure 2.1 performed, while processor three

performs a loosely-coupled task to write data to a disk as did

processor two in Figure 2.1. This example demonstrates the powerful

modularity of distributed processing systems.

ADVANTAGES OF MODULARITY

The inherent modularity of distributed processing systems offers

a number of advantages, in both hardware and software, over a large,

single-processor system. Among the advantages realized with a

distributed processing system are a higher cost-to-performance ratio,

simple expansion, simpler, more modular software, and less stringent

demands on the hardware design. The higher cost-to-performance ratio

comes about because to double the performance of a single processor

system usually costs more than twice as much, whereas adding a second

processor to the system is more of a linear addition in cost. Also,

there is an inherent limit to the performance available in a single

processor system, whereas in distributed processing systems the

performance can be upgraded until the maximum number of processors

capable of being supported is reached. The ready expandability of

distributed systems is economical in both cost and more importantly

time. Take a case where experimental demands change after a system is

in use and a 25% increase in processing speed is needed. In a single

processor system, the main processor would need to be replaced, most

likely requiring new hardware interfaces and new or rewritten software

for the new processor. A distributed processing system could achieve

19

the needed increase in performance with the addition of another

processor and with changes only in the routines affected by the

additional processor. By spreading the processing demands over several

computers, the demands on the hardware system become less strenuous.

Five processors operating with 1 MHz bus bandwidths are easier to

implement and more noise immune than a single processor system with

a 5 MHz bus bandwidth.

Distributed processing systems benefit from the separation of

tasks to different processors. In a single processor system which is

performing multiple tasks, as the number of tasks increases more and

more of the processor's time is spent changing from on task to

another4. A distributed processing system with tasks running on

separate processors does not suffer from this task switching overhead.

Since multiple tasks can be split into separate processors,

programming complex applications can become much easier. A programmer

can create separate routines for each function on different processors

without programming multiple tasks into a single loop or concern about

interrupt latency and throughput. This independency of tasks can

greatly ease the adaptation of the system to new experimental demands.

Routines in separate processors can often be more readily modified

with less interference to other tasks than can routines in a single

processor system. The systems described in Figure 2.2 can be examples

of this. If a new, slightly longer and more complex algorithm was

needed to calculate the new DAC values, the system in Figure 2.2a

would suffer a reduction in the overall sampling rate and additional

difficulties in programming could be posed if register use were

20

critical. The acquisition routine might have to be recoded to make up

for the additional computational time of the DAC routine. This would

not be the case in the system in Figure 2.2b; the DAC routines could

be modified without having to disturb the acquisition code at all.

INTERPROCESSOR COMMUNICATION REQUIREMENTS

Once a system has evolved into a distributed processing system,

it becomes necessary to define how the different processors in the

system will communicate with one another. The various modes of

communication needed for real-time instrument control are summarized

in Table 2.2. The transfer of blocks of information between processors

is necessary so that programs may be loaded into the processors and

data sets may be handled efficiently. A mechanism is needed to

instruct the various processors in the order in which to execute their

designated tasks. The ability to queue up a series of tasks for

execution by a given processor is a desirable feature. The assignment

of succeeding tasks to a processor should not interfere with the task

currently being executed. Parameter passing involves the transfer of

small amounts of information between processors. Often these are

parameters that modify the execution of tasks assigned to a processor,

specifying such information as number of iterations or scanning speed.

A method for passing task status information between processors is

needed so that the execution of tasks in separate processors can be

coordinated. As in the case of task assignment, it is preferable that

21

Table 2.2 Interprocessor Communication Modes

1. Block data transfer

2. Task assignment

3. Parameter transfer

4. Task coordination

22

the coordination of processors does not interfere with the execution

of tasks.

These different modes of communication between processors could

be supported by the use of shared memory. However, there are

advantages in both speed and non-interference if the different modes

are supported by dedicated hardware. Hardware support for the various

communication modes can be implemented so that none of the

communication modes interfere with tasks being executed by a

processor. However, in the case of block data transfer interference

is not a major consideration. This is because these types of transfers

take place at system startup when code is loaded into a processor or

when a processor requests that a block of data be transferred from

its memory and is therefore not executing a time-critical task.

Allowing the block data transfer to interfere with task execution on

a processor allows the hardware to suspend operation of the second

processor during the transfer. This performance concession can greatly

reduce the complexity of the hardware needed to support block data

transfers.

SOFTWARE CONSIDERATIONS

An important consideration of the software system is its

suitability for instrument control applications. An excellent

discussion of the features needed in a language for laboratory use

can be found in ref.5 Real-time instrument control requires the ability

to control many specialized interfaces in a timely manner. The ease

23

of interaction with specialized hardware and the speed of program

operation are important features in software for control applications.

In the research laboratory experiment design is constantly evolving.

The software for a control system should make it easy to adapt a

system to changing experimental needs. Utilization of a high-level

language tailored for instrument control applications can facilitate

programming of the system by novice users. The use of a consistent

high-level language across all processors can reduce the complexity

of programming in the distributed programming environment.

Although in some cases, additional processors can readily be

added to a system by merely plugging them into the system backplane,

developing the software to run a distributed processor system is not

as simple. In the first place there are almost no readily available

operating systems for small distributed processing systems. Secondly

few languages have been developed for programming multiple processor

systems. In many distributed processing systems, most of the

processors operate more like dedicated intelligent peripherals,

usually running programs developed in assembly language that are

stored in programmable-read-only memory (PROM). This approach is not

very acceptable in a research laboratory where the demands on

instrument control systems are constantly changing. The time consuming

cycle of assembly language coding, PROM programming, and code testing

inhibits the flexibility and adaptability of the system.

The need to be able to readily modify the software running in

the various processors gives rise to a number of design considerations

24

for the software system used to run a distributed processing control

system in a research laboratory. Among these are the use of processors

that mainly run software loaded into random-access memory (read/write

memory or RAM) so that the software can be readily modified or

replaced. The use of a high-level language to program all of the

processors in a system makes programming faster, easier and more

efficient.

The system should allow for local program development so that

new routines can be developed and tested interactively with the

instrument, possibly even during an experimental session. This

precludes the use of cross compilers and assemblers that run on larger

computer systems. Here only the resulting object code is transferred

to the control system, and all program development must be performed

offline. The use of cross compilers and assemblers can be particularly

frustrating during the testing and debugging stage of software

development. As each problem is corrected the programmer must go to

a different machine and make the necessary changes, recompile the

program, and transfer it to the control system again. This results in

the need for an operating system and programming language small enough

to reside on the control system but powerful and flexible enough to

allow for rapid program development on several processors as well.

25

SYSTEM DESIGN CONSIDERATIONS

As part of an ongoing investigation of laboratory

instrumentation systems, our research group embarked on the

development of a distributed processing system for laboratory

instrument control. The design goals of this project are summarized

in Table 3. The details of this system are presented in two additional

manuscripts. The first covers the design and implementation of the

system hardware. The second discusses the development of a software

system to utilize the power of the distributed processing hardware.

Utilization of distributed processing techniques can provide the

scientist with the needed computing power to develop the next

generation of intelligent instruments. These systems will include

among their extensive capabilities aids to the optimization of

experimental conditions, optimization of data acquisition parameters

in real-time, and automatic sequencing among different experimental

conditions and configurations.

26

Table 2.3 Summary of Distributed Processing System Design Goals

1. Implementation of Interprocessor Communication Modes

2. Non-interference with Timely Events

3. No resident Monitor Required in Auxiliary Processors

4. Modularity of Hardware and Software Systems

5. Easy Transition from a Single Processor to a Distributed

Processing System

6. Readily Programmable by Non-expert Users

7. Readily Adaptable to Changing Experimental Needs

8. Efficient Software Environment for Real-time Instrument

Control

27

REFERENCES

1Enke, C.G., Proc. 28th IUPAC Conference, Vancouver, BC (1981)

2J.T. Lawson, M.P. Mariani, Proceedings of the IEEE, 358 (1978)

3B.C. Searle, D.E. Freberg, Computer, 22. Oct. 1975

4Linden, I. Wilson, Microprocessors and Microsystems 4, 211

5 Dessy, R.E., Anal. Chem. 55(6), 650A, (1983)

28

Chapter 3 : INTERPROCESSOR HARDWARE OVERVIEW

29

Although the hardware for this system has been discussed in

detail elsewhere6, a brief review will aid in setting the background

for the software description to follow. The hardware uses modules

that were created as part of a project to develop a flexible

microcomputer system for the research laboratory environment7. Each

module implements an individual function; the modules include central

processing unit (CPU), memory, parallel interface, analog-to-digital

converter, etc. Several of these modules may be mounted on a

motherboard that connects them to a common data and address bus.

Multiple motherboards may be plugged into a common backplane to

configure a computer system with the desired capabilities. Over the

three year life of this project, more than twenty function modules

have been developed including two CPU modules, one utilizing an Intel

8085 microprocessor and the other an Intel 8088 microprocessor. Five

of the modules developed provide interfaces to an interprocessor

communications bus.

When this hardware is configured in a distributed processing

system through the interprocessor bus, it can support up to eight

CPUs running in parallel. Each processor in the system is assigned a

processor ID number between 0 and 7. The master processor is given an

ID number of 0, while any slave processors in the system are numbered

consecutively starting at 1. The prototype distributed processor

system which operates a triple quadrupole mass spectrometer consists

of one master processor and three independent slave processors. In

this system all of the processors utilize the 8088 CPU module. The

master processor is interfaced to a CRT terminal and a printer for

30

user interaction, and an 8-megabyte Winchester disk drive for program

and data storage. Each slave processor is assigned a specific set of

functions and has only the instrument interfaces needed to perform

those specific functions. The slave processors are dedicated to

specific tasks and are not general purpose or interchangeable

processing units as is the case in some distributed processing systems

optimized for other purposes.

In the distributed processor environment, three types of

interprocessor communication are supported by specialized interface

modules. The interconnection of the processors by these communication

links is illustrated in Figure 3.1. Three interprocessor communication

modules are mounted on a motherboard to form links between a

processor's local data and address bus and an interprocessor

communications bus. Each processor in the system has one

interprocessor motherboard plugged into its backplane. One of the

three interprocessor modules supports the direct memory transfer (DMT)

communication mode. The DMT mode allows the master processor to

transfer data between any two processors in the system. The master

processor can perform a transfer between the memory on any two slaves

or between memory on the master and any slave. This is accomplished

with bus switching hardware that puts any slave processor involved in

a transfer on hold and connects its local data and address bus to the

interprocessor communications bus. When the transfer is completed,

the slave processor's bus is released, and program execution in the

slave is resumed.

31

Figure 3.1 Interprocessor Communication Path Block Diagram

32

A second interprocessor module supports a method of

communication called the command transfer mode. The hardware on this

module consists of first-in-first-out (FIFO) buffers for each slave

processor. Each FIFO is 24 bits wide and 32 elements deep and is

referred to as a command buffer. The master processor can write data

into any slave's FIFO which then can be read out and interpreted by

the slave. The low order 20 bits written by the master are stored in

the FIFO as data. The four high order bits are hardware control

signals that can be used to immediately reset, hold or interrupt the

slave processor.

The third interprocessor module provides a communication mode

called status transfer. The hardware on this module involves 16 bytes

of dual-port memory. Each processor in the system (maximum of eight)

is assigned two bytes of status information: one hardware status byte

and one software status byte. These are maintained up to date in each

computer's dual-port memory. The hardware status byte for each

processor includes such information on the processor as command buffer

full or empty, and processor halted. The software status byte is

used to synchronize tasks between different processors by using

program-driven flags or codes to indicate program status. This

hardware and software information on each processor is updated every

4 usec in each processor's interface through a special status bus,

which is part of the interprocessor communications bus.

33

REFERENCES

6 B.H. Newcome, C.G. Enke, Rev. Sci. Inst. Submitted for publication 1984.

7 B.H. Newcome, C.G. Enke, Rev. Sci. Inst. Submitted for publication 1984.

34

Chapter 4 : An Integrated Software System

35

A Distributed Processing System for Real-Time Instrument Control

3. An Integrated Software System

Carl A. Myerholtz

Christie G. Enke

Department of Chemistry

Michigan State University

East Lansing, MI 48824

36

The hardware for a distributed processing system for laboratory

instrument control has been described earlier8. This hardware allows

control systems to be assembled easily and provides communication and

control pathways among several processors in a tightly-coupled

distributed processing system. In order to utilize these capabilities

effectively, a software environment had to be created which could

effectively develop real-time research instrument control

applications.

SOFTWARE SELECTION CONSIDERATIONS

The software developed to operate with this hardware needed to

be as well suited for operation in a single processor environment as

in a distributed processing environment. Since the hardware provides

an easy path for upgrading to a distributed processing system, the

software selected also needed to be able to make the transition

easily. This constrained our software development to systems that can

operate effectively in a small single processor environment as well

as a larger multiple processor distributed environment. It is also

important that programming language features and structure should be

such that transferring a task to a separate processor would not

require extensive recoding of existing programs.

In addition to its suitability for operation in a distributed

processing system, the software system should be adaptable to

instrument control applications. Real-time instrument control often

involves the need to control many specialized interfaces very rapidly.

37

The ability to interact directly with these specialized interfaces

and the speed of execution of programs are important considerations.

In a research laboratory, experiment design is constantly evolving so

that it is important that the control software for an instrument be

able to be reconfigured easily to meet new experimental demands.

Another goal for our software system was that it provides the

user with the ability to develop and test programs destined for the

slave processors, load programs into the slaves, and provide methods

of accessing the slave processors for debugging purposes. The software

environments of the master and slave processors should be as similar

as possible, so that programs may be tested on the master processor,

where the user can readily interact with the program, prior to being

loaded into a slave processor.

In a few cases, groups have endeavored to develop from scratch,

languages and operating systems designed specifically for distributed

processing applications9,10. This approach was viewed as too costly

and time consuming an undertaking for a scientific laboratory.

Instead, only currently available languages and operating systems

were considered and evaluated for their suitability and adaptability

to the distributed processing environment. What was needed was a

language that would operate effectively on small single processor

systems, but could easily be enhanced to operate in a distributed

processing system.

38

SELECTION OF THE FORTH LANGUAGE SYSTEM

The high-level programming language FORTH was chosen as the

basis for this system11,12,13. Although FORTH is not a widely used

language, its popularity has increased steadily since its inception.

Originally developed in 1968 to control a radio telescope at the

National Radio Astronomy Observatory, FORTH is one of the few

languages developed for small computer systems with control

applications in mind14. Implementations of FORTH are now available for

nearly all popular microprocessor and minicomputer systems. Some of

the implementations include such advanced features as multi-tasking15

and floating point processor support16.

A FORTH program, or "word", consists of a series of previously

defined words. These "words" are stored with their definitions in a

"dictionary"; definitions for new words are merely lists of previously

defined words. When executed, each word (program) performs a function

that can be as simple as addition or as complex as plotting an entire

graph of acquired data. Even a novice user can write programs (new

words) by merely concatenating existing high-level words. All

previously defined words, from assembly language to the highest level

can be used in any given program. When executed directly, each word

acts like a separate program. When used as a command in another

program, it is like a subroutine. A typical FORTH system has several

hundred words in the "vocabulary" of the core system. The modularity

of FORTH words is similar to that of distributed processing systems.

39

Simple modules (or words) can be readily combined into complex modules

that can be combined into even more complex modules.

An unusual feature of FORTH is the use of a push-down stack to

pass parameters between words when they are acting as subroutines in

a larger program. A push-down stack acts as a Last-In-First-Out (LIFO)

buffer; items placed on the stack are removed in reverse order. FORTH

uses this parameter stack to pass values between both high level and

assembly language routines. Thus, the interface to an assembly

language routine is no different from that to a high level FORTH

routine.

It's extensibility, the ability to add new commands to the

language, is one of the most powerful features of FORTH. It is

generally recognized that high-level languages aid in program

development. But, in order to be of significant aid to a programmer,

a language must contain those high-level functions that are needed

for the given application. FORTRAN is an example of a high-level

language well suited for numeric processing. FORTRAN, which stands

for formula translation, was designed to make computational

programming easier. Most control applications do not need a great

deal of computation. Instead, they need many specialized input/output

(I/O) functions and the ability to respond rapidly to real-time

events. When FORTRAN is used to program control applications, the

special I/O functions often end up being coded as assembly language

subroutines. The result is that most of the actual control software

is not written in a high-level language. When developing control

40

application software, as in all projects, it is important for the

tool to fit the job. Most of the major programming languages available

today were originally designed to run on large computer systems and

solve numeric processing or data management problems. These more

traditional programming tools can be applied to control systems, but

this is like trying to use a pickaxe to drive a nail, neither the

scale nor the function are quite right for the job.

FORTH can be the basis for the development of high-level

languages which are specific for each application. In FORTH

programming, words build on each other, each new word becoming a

higher and higher level of operation. The end result is a high-level

language that is specific to the application at hand. As programs for

a given level of operation are achieved, these become the "high-level"

words for the next level of program capability. This makes programming

that application on any level very efficient. Figure 4.1 is a listing

of a short FORTH program that illustrates how this comes about. The

application to be controlled is a stepper motor that advances 0.25

degrees each time memory location 10 is accessed. Line 0 is just a

comment line to indicate these routines are for the stepper motor.

Line 2 defines a new word STEP that fetches (@) the value from location

10 and then discards (DROP) it. This causes the stepper motor to

advance 0.25 degrees. The word STEPS, defined on line 4, pulses the

motor n times, where n is the number on top-of-the-stack (TOS). This

is done by using the new word STEP and the standard FORTH words DO

and LOOP which create a loop that goes from 0 to n, thus repeating

STEP n times. The final word, DEGREES, advances the stepper motor a

41

0 (STEPPER MOTOR ROUTINES)

1

2 : STEP 10 @ DROP ;

3

4 : STEPS 0 DO STEP LOOP ;

5

6 : DEGREES 4 * STEPS ;

7

8 : DEMO 360 0 DO ACQUIRE CR . 10 DEGREES 10 +LOOP ;

Figure 4.1 FORTH programming examples illustrating how words build

into more and more powerful commands.

42

given number of degrees. It takes the number on TOS as the number of

degrees to move and multiplies this by four leaving the result on

TOS. This provides the number of 0.25 degree steps desired which the

word STEPS then uses to advance the stepper motor. This new word

DEGREES can be used to create a simple data acquisition experiment

that acquires and displays a data point for every 10 degrees of

stepper motor rotation. Line 8 in Figure 4.1 defines the word DEMO

that performs this experiment. A loop is created with the DO and +LOOP

words that will go from 0 to 360 by steps of 10. The user written

word ACQUIRE acquires one data point and returns it on top of the

stack. This value is displayed on a new line with the "CR" and "."

commands.

FORTH is a very compact and powerful language system. A basic

FORTH system which contains the FORTH compiler, an editor, an

assembler, disk accessing functions and terminal I/O routines

typically occupies only 8 Kbytes (K=1024) of processor memory. For

applications not requiring all of the above features, the FORTH kernel

can be reduced to under 1 Kbyte. The small memory requirement of this

language system makes it ideal for small microcomputer systems such

as dedicated slave processors.

In a standard configuration, the FORTH language system

incorporates a high-level language, editor, assembler, and operating

system functions in an integrated package. It can be a stand-alone

system that does not require the use of other software packages or an

additional operating system to function. All functions of the editor,

43

assembler, operating system and high-level language are available to

the user at all times; there is no need to invoke a separate editor

to edit text. An edit command can be issued at any time by the user

from a terminal or by a program while it is running; FORTH makes no

distinction between the two operations. The major functions of high-

level language, editor, and assembler all follow the same rules of

form and syntax which makes the system internally consistent and

easier to use than non-integrated systems.

FORTH allows the user to access memory and input/output (I/O)

ports on peripheral devices directly. There is no operating system

standing guard (or interfering), between the user and the system

hardware. Many I/O tasks can be taken care of in high-level FORTH. In

addition, memory and I/O ports can be accessed readily from a

terminal, greatly simplifying the testing and debugging of hardware

interfaces.

Typically, programs written in FORTH execute 30-50% as fast as

their assembly language counterparts. This is much faster than

conventional interpretive languages such as BASIC that execute

programs hundreds of times slower than assembly language. The speed

of FORTH, its ability to interact directly with the processor and its

peripheral devices allow much more efficient use of machine resources

than many compiler language systems such as FORTRAN and PASCAL.

Availability of source code for the language was also an

important consideration since some modification would be necessary to

adapt the language to support interprocessor and intertask

44

communication. Source code for FORTH is readily available for most

popular microprocessors from a number of vendors. Two of the sources

are the Forth Interest Group (FIG) and FORTH Inc. of Hermosa Beach,

CA. The Forth Interest Group offers source code for FORTH

implementations on a variety of processors for a nominal cost.

However, the source code available from FIG has a number of drawbacks

for this application. The principal drawback of the FIG

implementations is that the basic FORTH system is written in

conventional assembly language and requires a separate assembler to

generate a FORTH system. Unlike the FIG implementation, the source

code for the polyFORTH system from FORTH Inc. was written in FORTH

and includes a target compiler that allows one FORTH system to

generate a new FORTH system. An additional feature of the polyFORTH

system that make it attractive is support of multitasking. Although

the polyFORTH system is quite a bit more expensive than the FIG

implementations, the performance, target compiler, training support,

and other advanced features make it well worth the expense in this

application.

ADAPTING FORTH TO A DISTRIBUTED ENVIRONMENT

The basic FORTH system which normally operates in a single

processor environment had to be expanded to handle the interprocessor

tasks of block data transfer, parameter passing, and task assignment.

This involved additions to the FORTH system running on the master

processor and development of modified FORTH system that would operate

45

within the slave processors. It was also necessary to develop a method

of compiling the modified FORTH system and loading it into the slave

processors.

Compilation of Slave Processor Software

The first step in adapting FORTH to a distributed processor

environment involved modifications to the polyFORTH target compiler

that is executed on the master processor. Several interprocessor

memory access words were developed that utilize the direct memory

transfer (DMT) hardware to transfer data between the memory of

different processors in the system. These words, which are described

in Table 4.1, form the basis for the transfer of large blocks of

information between processors. Their use follows the sequence: select

a slave processor with the #SLAVE command, then transfer data between

the master's parameter stack and the selected slave's memory. Two

slave processor control words, RESET and HLD, were developed. These

words utilize the control signals provided by the command transfer

hardware to reset a selected processor or put a processor into a HOLD

state, preventing any program execution. These interprocessor control

and access words were used to create a modified version of the target

compiler that directly downloads the code into the desired slave

processor instead of writing the compiled code to the disk.

There are several advantages to having a compiler that directly

downloads code into the target processor. One advantage is that the

compiler can initialize variables and tables in the slave processor

during the compilation process. This eliminates the need for special

46

Table 4.1 Interprocessor Memory Access Words

SLAVE - select the slave whose number is on top of the stack

(TOS) for access by the interprocessor memory operations.

I@ - Fetches a 16-bit value from the address specified by the

master's TOS in the slave selected by #SLAVE to the master's

stack.

! - Stores the second value on the master's stack at the address

on top of the stack in the slave previously selected with #SLAVE.

This operation transfers a 16-bit value.

IC@ - Fetches an 8-bit value from the address specified by the

master's TOS in the slave selected by #SLAVE to the master's

stack. I! - Stores the low-order byte of second value on the

master's stack at the address on top of the stack in the slave

previously selected with #SLAVE.

SLAVE - Selects the source and destination processors for the

IMOVE function. The TOS value is the destination processor

number and the second stack value is the source processor number.

IMOVE - Transfers n bytes from a source address in the source

processor to a destination address in the destination processor

selected by the >SLAVE command. Usage: source add, dest add,

number bytes IMOVE.

47

slave initialization routines which take up memory and are only used

once. The devices interfaced to the slaves are all memory-mapped;

thus, the compiler can also be used to initialize all of them

appropriately. Since the compiler interprets code from the disk, the

entire specialized initialization procedure may reside on the disk

rather than occupy any system memory.

For the master processor to instruct a slave processor to execute

a selected routine, the master processor should have some knowledge

of what routines are available in a given slave. To accomplish this,

a word was added to the compiler which records information about

selected slave commands into a Slave Command Access Table (SCAT).

This new word is called COMMAND and is a FORTH "immediate" word. This

type of word is executed at compilation time instead of being compiled

and is thus useful in adding new functions to the compiler. When it

is executed, COMMAND records into the slave's SCAT the first three

characters of the name, the length of the name, and the code field

address of the last word compiled into the slave. This information is

later used to direct the execution of a task in a slave processor.

DIRECTING SLAVE PROCESSORS

The source code of the basic FORTH system to be used in a slave

processor had to be modified so that the slave processor can receive

instructions from the command FIFOs. The code that normally interprets

commands and data from a terminal was replaced with new code which

performs the same function using the command FIFOs. The result is a

48

slave interpreter that operates in the following manner: using the

command buffer hardware, the slave monitors the condition of its

command FIFO. When the FIFO becomes not empty, the high 8 bits of the

24-bit value in the FIFO are read. A value of one indicates that an

immediate control operation using the high four bits was executed. In

this case the lower 16 bits are discarded. If the value is two, this

indicates that the lower 16 bits contain the code field address of a

FORTH word to execute. Control is then transferred to the routine at

this address. When execution is completed, control will return to the

command FIFO interpreter. A value of three in the high byte of the

command FIFO signals that the lower 16 bits are data. This value is

then transferred to the slave's parameter stack. This method of moving

numeric data to the stack and initiating the execution of a word

appears to the rest of the FORTH system to be identical to interpreting

text from a terminal. This new command interpreter was installed in

such a manner as to preserve the multitasking capabilities of the

polyFORTH system. Thus, a slave can be running a background task such

as an oscilloscope display and still be able to act on new commands

sent to it through the command buffers.

The slave processors do not possess terminals or disk drives;

thus, the support code for these devices is not normally down-loaded

into a slave. This reduces the basic FORTH slave system to

approximately 2 Kbytes. However, for debugging purposes, terminal

support software can be loaded into a slave processor to allow a

programmer to interact with it directly. Normally the user can

directly interact with only the master processor. Since the slave

49

interpreter operation mimics normal operation from a terminal, a

programmer may test a routine on the master and then, when it is down-

loaded into a slave, he or she can be confident it will behave in the

same manner.

MASTER PROCESSOR FORTH EXTENSIONS

To allow programs running on the master to pass data and commands

to the various slave processors, several new words were defined for

the master processor FORTH system. The first of these follows the

form nPUSH, which pushes the value at the top of the master processor's

stack to the top of the nth slave processor's parameter stack. This

becomes the primary method of parameter passing from the master to

the slave processors. The second type of word developed was designed

to ease access of variables and arrays in a slave processor from the

master processor. It follows the form nLABEL and is used to define a

new word on the master processor that when executed selects the

appropriate slave with the #SLAVE command and leaves the address of

a variable in the slave on the master's stack. The execution of words

defined by this command prepares the master processor for use of one

of the interprocessor memory access words described in Table 4.1. The

third major type of word added follows the form SLn, and allows

commands to be passed to a slave in the form of addresses of FORTH

words to execute. When executed, a word of this form looks up the

code field address for the word that follows it in the Slave Command

Access Table for slave n. If the look-up is successful, the address

50

is transmitted to slave n's FIFO as a command to be executed. The SLn

and nPUSH commands use the status hardware to determine if a slaves

FIFO is full or not. If the FIFO is full the command passes control

to the next task in the multitasking loop. When control is returned

to the command it checks the FIFO status again. this process is

repeated until data can be transferred to the slave's FIFO.

A brief example of how some of these commands are used is

presented in Figure 4.2. In the code for slave one the word SQUARE is

defined. It squares the number on top of its stack. After the

definition of SQUARE the word COMMAND appears that causes the compiler

to make an entry for SQUARE in the SCAT for slave one. Similarly the

code for slave two contains the definition of the word CUBE. On the

master processor the word POWERS is defined and it behaves as follows:

first it duplicates the number on the top of the stack, then it

transfers that number to the stack of slave one and to the stack of

slave two with the 1PUSH and 2PUSH commands. Then the SL1 command is

used to direct slave one to execute the SQUARE function while the SL2

command directs slave two to execute the CUBE function.

51

SLAVE 1:

 : SQUARE DUP * ; COMMAND

SLAVE 2:

 : CUBE DUP DUP * * ; COMMAND

MASTER:

 : POWERS DUP 1PUSH 2PUSH SL1 SQUARE SL2 CUBE ;

Figure 4.2 Sample Multiprocessor Program

52

RESULTS AND CONCLUSIONS

Three of the major interprocessor tasks, block data transfer,

parameter passing, and task assignment, can easily be accomplished by

the use of the new words added to the master processor's FORTH

vocabulary. Tables 4.1 and 4.2 summarize the new FORTH commands that

a user needs to learn to develop programs to run in a distributed

environment. Block data transfers can be readily programmed utilizing

the LABEL commands and the interprocessor memory access words

described in Table 4.1. The passing of parameters from the master to

the slaves is accomplished by the use of the PUSH commands. Assignment

of tasks to the slave processors is made simple by the use of the SL

commands and the ability to refer to the slave tasks by name.

The use of this type of software system is not limited to the

dedicated hardware developed in our laboratory. This software approach

could be implemented on any multiprocessor system with shared memory.

It would require the development of additional software to emulate

the various communications modes implemented in hardware. The

specialized communications hardware developed as part of this project

offloads some of the burden from the software and offers some time

savings, which, when trying to accomplish a great deal of real time

instrument control, can be vital.

53

Table 4.2 User Extensions to FORTH and the Target for the master

processor

COMMAND - A directive to the target compiler to record

information of the last word compiled into the slave command

access table.

1PUSH,2PUSH,3PUSH - Transfer the TOS value from the master's

parameter stack to the specified slave's parameter stack.

SL1,SL2,SL3 - Direct the specified slave to execute the word

whose name follows the SLn command. Example: SL1 + would cause

slave one to perform an addition.

1LABEL,2LABEL,3LABEL - Usage: 1LABEL slave-name master-name.

Creates a word in the master's dictionary (master-name) that

when executed selects the appropriate slave number for

interprocessor memory access and leaves the address of the

parameter field of slave-name on the master's stack.

HLD - Causes the slave processor whose number is on TOS to be

put in a hold state, preventing program execution.

RESET - Performs a hardware reset of the slave processor whose

number is on TOS.

54

The primary goal of this effort was to develop a programming

environment for a distributed processing system that was simple and

easy to use. The use of FORTH for program development on both the

master and the slave processors makes the system internally consistent

and easy to use once the fundamentals of FORTH are mastered. Although

a moderate amount of sophisticated systems level programming was

needed to develop this system, it is simple and straight forward to

use. This system has been used to implement a four-processor system

to control a triple quadrupole mass spectrometer. Use of this system

demonstrates: the speed of programming, use by novices to design

automated experiments, speed of execution and gains of parallel

processing, completely modular software that is non-interactive with

parallel tasks except where it should be.

55

REFERENCES

8 B.H. Newcome, C.G. Enke, Rev. Sci. Inst.

9 R. Taylor, P. Wilson, Electronics 55, No. 24, 89, (1982)

10 S.H. Fuller, J.K. Ousterhout, et. al. Proceedings of the IEEE 66, No. 2,

216

11 C.H. Moore, Astrom. Astrophys. Suppl. 15, 497, (1974)

12 J.S. James, Byte 5, No. 8, 100 (1980)

13 S.M. Hicks, Electronics, March 15, 1979, p. 114

14 C. Moore, Byte 5, No. 8, 76 (1980)

15 R.E. Dessy, M.K. Starling, American Laboratory, 21, Feb. 1980

16 Forth Inc, Hermosa Beach, Ca.

56

Chapter 5 : A Distributed Processing Control

System

57

New Directions in Computer Control of Chemical Instrumentation:

An Application to Triple Quadrupole Mass Spectrometry

Carl A. Myerholtz

Bruce H. Newcome

Christie G. Enke

Department of Chemistry

Michigan State University

East Lansing, MI 48824

58

Advances in modern computing technology have had a dramatic

impact on the analytical research laboratory in recent years17, 18,19.

The introduction of minicomputer systems made it possible to bring

computing facilities into the laboratory where the scientist could

utilize them directly. Many of the early computer systems performed

mainly data acquisition and data reduction functions. As the cost of

laboratory computer facilities decreased while their capabilities

increased, laboratory computer systems were given more

responsibilities. Computers systems were interfaced more intimately

to instruments in order to perform control operations such as scan

generation and temperature programming in addition to data acquisition

and data reduction. Advances in storage technology have allowed

greater amounts of data as well as reference libraries to be stored

in laboratory computer systems. These systems began to be known as

"data systems", and as they were paired up with instruments, we began

to see terms such as MS/DS appearing referring to the combination of

a mass spectrometer and a data system."

When the functions of a conventional data system are examined,

it can be seen that they can be classified into two general groups;

first the real time functions which are involved in instrument control

and data acquisition and secondly, the non-real time functions such

as data analysis, reference library searching, archival data storage,

and tabulation and presentation of results. These two groups have

very different requirements in both CPU response time and types of

resources needed. The control group requires a fast response time and

dedicated interfaces to the instrument while the data analysis group

59

requires large mass storage devices (e.g. disk and tape drives),

graphics display devices, and facilities for hard copy generation

(e.g. printers and plotters) and can tolerate a moderate CPU response

time. Examining these different requirements suggests that the needs

of a data system might be best met by two computers operating in a

hierarchical manner20,21.

The real time functions can be performed by an intelligent

instrument control system which can be dedicated to the particular

instrument and which will handle all of the instrument control and

data acquisition functions. The data analysis functions can be

performed by a second system which is configured to handle these tasks

in an efficient manner. This scheme allows the data analysis computer

to be operated as a multi-user system which can analyze the data from

more than one instrument. The cost and capabilities of expensive

peripherals can then be shared by more than instrument or function.

This distribution of data system functions also allows analysis of

stored data and acquisition of new data simultaneously thus maximizing

the use of an expensive instrument. In our laboratory we have

implemented such a hierarchical system using microcomputers for the

intelligent control systems and a minicomputer for the data analysis

system.

Modern microprocessors are ideally suited for dedicated control

systems since they offer high performance at a low cost. A further

advantage of these microprocessors is that they are supported by a

large variety of inexpensive LSI (large scale integration) peripherals

60

such as serial ports, parallel ports, counter/timers, and

microprocessor-compatible signal converters. The availability of

these low-cost interface devices is important since it allows a much

larger number of instrument parameters to be controlled at a

reasonable cost. The programmable nature of many of these devices is

also an advantage since it allow a custom interface to the

instrument to be easily implemented from standard devices.

Data analysis systems need to be able to support large amounts

of storage for both data and reference libraries. Support for

languages such as FORTRAN and PASCAL for data manipulation and number

crunching applications must be provided as well as multiuser,

multitasking operating systems. Graphics capabilities are often added

to these systems to aid in data display and interactive data analysis.

Relatively expensive features such as large storage devices, floating

point processors, and graphic displays can be most effectively

utilized in a multiuser environment, where several users can take

advantage of these capabilities at one time. Commercial minicomputer

systems such as the PDP-11 series from Digital Equipment Corp.22 with

the RSX-11M operating system are well suited for such applications.

Figure 5.1 illustrates the hierarchical system of computing facilities

in use in our laboratory. Microprocessor based systems are used to

control instruments and acquire data. The data is then passed up to

a PDP-11 computer system for data reduction, display and archival

storage23. This computer is also part of a department-wide distributed

network which allows access to even a greater variety of resources if

they are needed.

61

Figure 5.1 Distributed Intelligence

62

This separation of instrument control and data analysis tasks

frees each of the computer systems to provide enhanced capability.

Once freed of real-time processing constraints, the data analysis

system can be expanded to provide more sophisticated data reduction

and retrieval functions. Expert systems utilizing artificial

intelligence concepts can be developed. The control system can also

grow in sophistication and take on even more aspects of instrument

control. Ideally these systems would control as many instrument

parameters as possible and record these parameters along with the

acquired data to create a complete experimental record. This paper

will focus on the control system part of the data system and show how

substantial advances in control capability and operator assistance

can be achieved.

DESIRABLE CONTROL SYSTEM FEATURES

As control system tasks evolve from simple data acquisition to

full instrument control, an expanded number of capabilities and

features are needed to ensure that the operator and an instrument can

effectively interact to produce the best possible results from the

experiment. A number of these features are listed in Table 5.1. An

example of the desirability of software control of the instrument

over simple computer starting or monitoring of existing control

hardware is seen in the generation of a scan control signal. In the

case of computer-triggered scan generator, the computer can only

control the start of a scan whereas software generation of the

63

Table 5.1 Desirable Attributes for a Control System

• Maximum flexibility through programmed software control of the

instrument

• Appropriate and friendly user interface

• Aids in optimization of instrument parameters

• Adaptable to changing experimental needs

• User programmable for experimental procedures

64

complete scan signal allows simple linear scans and also logrithmic,

square-law, step, recursive, or any other function. Efficiency might

be improved by scanning at a fast rate until a signal peak appears

then backing up and scanning slowly over the peak. Total generation

of a scan control signal by the control system allows any scanning

algorithm to be implemented in the future without any modifications

to the hardware.

The existence of an appropriate and friendly user interface to

the control system is very important since an awkward or difficult

user interface discourages operator interaction with the system and

leads to higher error rates and increased frustration. A control

system may employ a number of devices to interface with the operator

such as keypads, terminals, or touch panels. The choice of device

depends greatly of the use of the particular system. Other factors

which contribute to a friendly user interface are the use of simple,

yet descriptive commands and the provision for more than one method

of modifying an instrument parameter. For example, the system might

provide a simple command, a video editor, and a menu, any of which

could change the parameter of interest. This would allow different

operators with a wide range of expertise to effectively operate the

instrument. Another feature that helps operator confidence is checking

for inappropriate commands and issuing descriptive warning and error

messages.

An important function of the control system is assistance in or

the automation of the optimization of the instrument parameters. The

65

control system can perform this function on a number of levels

depending of the needs of the experiment and the ability of the

operator. The existence of tuning aids which allow the operator to

interactively optimize the instrument are very helpful when the

instrument is performing non-routine experiments and/or when the

optimum tuning criteria are not clearly definable. When the optimum

or standard performance can be clearly defined by the operator the

control system could perform an automatic tuning operation. Another

possible feature of an advanced control system is the dynamic

optimization of the instrument during data collection using a

predefined set of goals specified by the operator.

A system which allows for changing experimental needs is useful

since this allows the system to expand if new ancillary equipment is

added to the instrument or if the instrument itself is modified. By

allowing such modifications to the control system, the frustration of

using an instrument which is only partially under computer control is

avoided. If the hardware of the computer system is modular, new

interfaces can be easily added to the system. Equally important is

that the software for the system should be open to modification so

new interfaces can be integrated into the system.

A useful feature for a control system is the ability to define

new experimental procedures so that routine analyses can be performed

easily and with few errors. It is desirable if the new experiments

can be defined by using the normal commands for the instrument instead

of a separate command language since this helps minimize the amount

66

of information that must be learned. As instruments become more

complex and their control systems become more sophisticated the amount

of computing power that is needed increases rapidly. As developed in

the next section, one possible way to achieve this increase in

computing power is to use several smaller computers connected together

as a distributed processing system instead of one bigger or faster

computer.

DISTRIBUTED PROCESSING SYSTEMS

Distributed processing systems offer several advantages over

single processor systems24,25. Some of these advantages are listed in

table 5.2 and can be grouped in three classes: faster execution,

independent task execution, and modularity of hardware and software26.

Systems utilizing more than one processor typically fall into one of

two classes, distributed processing systems and multiprocessing

systems. In a distributed processing system the work load is spread

over several processors by assigning a fixed set of tasks to each

processor. The processors are not necessarily identical; each may

incorporate enhancements to enable them to perform their allotted

tasks. These enhancements may include special interfaces, additional

memory or numeric coprocessors. This is called static load sharing,

where assignment of a task to an individual processor occurs during

the design phase. In a multiprocessing system the work load is spread

over several "equal" processors by assigning tasks to any unoccupied

67

Table 5.2 Advantages of Distributed Processing Systems

Faster Execution

• Parallel execution

• Less time spent in "overhead"

• Simpler addition of hardware controllers and processors

Independent Task Execution

• Non-interference of tasks

• Elimination of task interleaving programs

• Elimination of priority assignment programs

• Simpler task program modification

Modularity of Hardware and Software

• Consolidation of related tasks

• Simpler extension of instrument capability

• Simpler debugging and troubleshooting

68

processors. This is called dynamic load sharing, where assignment of

a task to a processor occurs during program execution.

Systems utilizing more than one processor can be loosely or

tightly coupled27These terms refer to the method of communication the

processors use to pass information. Loosely coupled systems use shared

peripherials to pass messages, while tightly-coupled systems use

shared memory to pass messages28 Multiple processors systems can be

interconnected in a variety of ways29,30,31. Several of these

interaction schemes are shown in Figure 5.2. In our laboratory we

chose to implement a distributed processing system utilizing a global

bus structure as the principal means of interprocessor connection32.

The bus structure developed can support one master processor and up

to seven slave processors. The master processor is equipped with

interfaces to interact with the user and to direct the operations of

the slave processors. The slave processors possess the interfaces to

the instrument, but cannot interact with the user directly.

PARTITIONING OF TASKS

The partitioning of tasks into separate processors takes on a

variety forms depending on the function being implemented and the

criteria used to separate tasks. Three of the major forms of task

partitioning are horizontal partitioning, vertical partitioning and

partitioning based on data access33. Two tasks can be horizontally

partitioned if they can be executed without regard to order or can be

executed concurrently. Vertical partitioning involves the separation

69

Figure 5.2 Multiprocessor Topologies

70

of tasks that have predecessor-successor relationships. These

relationships may arise from data dependency or control flow

considerations. Partitioning based on data access separates tasks by

what data they operate on. Temporal order, control and direction of

data flow are not considered. Since most tasks involved in real-time

instrument control have some form of predecessor-successor

relationship, efforts were directed toward developing a distributed

processing system utilizing vertical task partitioning. This required

the development of efficient communication links between the

processors.

Vertical partitions in real-time systems can be classified into

three major types according to transform concepts proposed by Yourdon

and Constantine34: afferent, central, and efferent. In afferent data

flow an input stream is prepared for internal processing. This

involves such actions as acquiring data points, signal processing

(averaging), formatting and conversions necessary to transform the

data into a usable form. Efferent data flow involves the preparation

of internally computed data for output transmission. Efferent

transforms perform the conversions, scaling, and formatting necessary

to present data to the output interface (display, DAC, printer, etc.)

in the required form. Central transforms are those between the

afferent and efferent data types. These central transforms are where

the main data processing, such as peak finding, of the system take

place. The afferent/central/efferent partitions may indicate classes

of tasks that can be separated into different processors.

71

MICROPROCESSOR SYSTEM HARDWARE

A system of modular microcomputer components was developed to

aid the construction of laboratory control systems35. In this system

each function (CPU, memory, ADC, parallel interface, etc.) is

implemented as a separate module. These modules are interconnected by

mounting them on a "motherboard". Several motherboards can be

connected together by plugging them into a backplane module. The

structural relationships of these system elements is shown in Figure

5.3. To date, more than 20 function modules have been developed for

this system, including two CPU modules (Intel 8085, 808836), three

types of DACs, parallel and serial interfaces, an analog multiplexer,

a programmable gain amplifier, and a 12-bit ADC. Figure 5.3 contains

all the essential modules for a small control system.

Several advantages arise from the use of such a system to

implement the necessary computer hardware for a control application.

One is that a system can be implemented with only the needed functions.

There are no multifunction boards that require the space and price of

the functions when only one of the functions is needed. A second

advantage of a flexible modular system is the ease of expansion and

upgrading. Experimental demands in the research environment are

constantly changing. The ability to incorporate additional modules to

extend areas of the instrument operation that are under computer

control is important. The capabilities of an existing control system

can be expanded by the addition of modules which add more memory,

72

Figure 5.3 Modular Hardware System

73

graphics display capabilities, or an advanced numeric processor.

Common functions such as "chip-select" logic can be implemented on

one module for use by all the other modules on each motherboard. This

reduces the board size and the complexity of other modules. By

minimizing the complexity of these modules custom interfaces for

special applications may easily be developed. This hardware system

has been utilized to implement an number of small control systems in

our laboratory37,38,39.

INTERPROCESSOR HARDWARE

Additional modules were developed for this system to allow

processors to be linked together to form a distributed processing

system (Figure 5.4). These modules implement three paths of

communication which are used to support the interprocessor

communication modes outlined in Table 5.3. The first interprocessor

module (Figure 5.4A) supports a direct memory transfer communications

path. This hardware allows transfers between the master processor and

memory on any slave. This is accomplished using bus switching hardware

which places any slave processor involved in a transfer into a hold

state and then connects the slave processor's address and data bus to

an interprocessor communications bus. When a transfer is completed,

the slave processor's bus is released, and program execution in the

slave is resumed. This hardware is used to implement the block

transfer of data between processors and to load software into the

slave processors at system startup.

74

Figure 5.4 Distributed Processing Modules

75

Table 5.3 Modes and Paths of Interprocessor Communication

Modes of Interprocessor Communication

• Block data transfer

• Task assignment

• Parameter transfer

• Task coordination

Hardware Paths for Interprocessor Communication

• Direct memory transfer

• Command transfer

• Status transfer

76

The second interprocessor communications path supported in

hardware is called the command transfer path (Figure 5.4B). This path

is implemented as a set of first-in-first-out (FIFO) buffers for each

slave processor in the system. Each FIFO buffer is 32 elements deep

and is referred to as a command buffer. The master can write data

into any slave's FIFO buffer, which can then be read out and

interpreted by the slave. In addition to the command FIFO buffer this

module provides control lines that allow the master processor to

reset, hold or interrupt a slave processor. The task assignment and

parameter passing functions needed for interprocessor communication

are implemented utilizing this hardware module.

The third interprocessor module provides a communications path

called the status transfer (Figure 5.4C). Each processor in the system

(maximum of eight) has one of these modules which contains 16 bytes

of dual-port memory. Two bytes are assigned to each processor: one

for hardware status and one for user definable software status. Each

processor's hardware status byte includes such information as command

buffer full or empty, and processor halted. The value of the software

status byte can be written by application routines to indicate what

function is under execution or when a task has been completed. These

values are updated every 4 usec through a portion of the

interprocessor communications bus called the status bus, so that any

change of status information in the system is known by all processors

within 4 usec. This module provides the principal means of

interprocessor task coordination.

77

SOFTWARE

Once this efficient modular hardware system was developed, it

was necessary to develop a software operating environment that

complements the capabilities of the hardware. The attributes of a

good laboratory language have been discussed in some detail in

references 40 and41. In our laboratory we have chosen to use the high-

level programming language FORTH42,43 ,44 to develop instrument control

applications. FORTH implements many of the attributes of a good

laboratory language. Among FORTH's more important features are its

small size, its ability to directly access machine resources, and its

extensibility. A standard FORTH system containing the FORTH compiler,

an editor, an assembler, disk access functions and terminal I/O

routines typically occupies only 8 Kbytes (K=1024) of processor

memory. For applications that do not require all of the above

functions, the FORTH kernel can be reduced to under 1 Kbyte. This

small size makes FORTH well suited for small control system where

FORTH can be programmed into read-only memory (ROM) so that it is

available upon system powerup. The standard FORTH system implements

all of the functions necessary for program development. Thus, each

FORTH based instrument can be programmed without the use of additional

software packages such as cross compilers, and without the need for

a separate development system. FORTH allows the user to access memory

and input/output (I/O) ports on peripheral devices directly. There is

no operating system standing guard, or interfering, between the user

and the system hardware. This is important in instrument control

78

applications where much of the work is interfacing to and operating

non-standard peripherals. Many I/O tasks can be taken care of in high-

level FORTH. In addition, memory and I/O ports can be directly

accessed from a terminal, greatly simplifying the testing and

debugging of hardware interfaces.

FORTH is an extensible programming language, one to which new

commands and structures can readily be added. A FORTH program, or

"word", consists of a series of previously defined words. Each word

performs a function such as multiplication, fetching data from memory,

acquisition of a data point or plotting a set of acquired data. When

executed directly, each word acts like a separate program or function

of the system. When used in defining a new "word" or program, existing

words act like subroutines in languages such as FORTRAN. A typical

FORTH system has several hundred words already defined in it's

"vocabulary". Programs are easily written, even by novice users, by

merely concatenating existing words: and in the process, a new,

higher-level word is added to the vocabulary.

An unusual feature of FORTH is the use of a push-down stack to

pass parameters between words. A push-down stack acts as a Last-In-

First-Out (LIFO) buffer; items placed on the stack are removed in

reverse order. FORTH uses this parameter stack to pass values between

both high level and assembly language routines. Thus, the interface

to an assembly language routine is no different than to a high level

FORTH routine. Whenever a number is entered on a command line it is

pushed onto the top of the stack.

79

In FORTH programming, words build on each other, each new word

becomes a higher and higher level of operation. The end result is a

high-level language that is specific to an application, which makes

programming that application more efficient. Figure 5.5 is a listing

of a short FORTH program that illustrates how this comes about. The

application to be controlled is a stepper motor that advances 0.25

degrees each time memory location 10 is accessed. Line 0 is just a

comment line to indicate these routines are for the stepper motor.

The definition of a word is begun with a ":" followed by the name of

the new word. The definition of a word is terminated by a ";". Line

2 defines a new word STEP that fetches (@) the value from location 10

and then discards it (DROP). This causes the stepper motor to advance

0.25 degrees. The word STEPS, defined on line 4, pulses the motor n

times, where n is the number on top-of-the-stack (TOS). This is done

by using the new word STEP and the standard FORTH words DO and LOOP

which create a loop that goes from 0 to n, thus repeating STEP n

times. The final word, DEGREES, advances the stepper motor a given

number of degrees. It takes the number on TOS as the number of degrees

to move and multiplies this by four leaving the result on TOS. This

provides the number of 0.25 degree steps desired which the word STEPS

then uses to advance the stepper motor. This modularity of software

complements the modularity of the hardware, where small simple

components can be readily combined together to perform a complex

function.

80

0 (STEPPER MOTOR ROUTINES)

1

2 : STEP 10 @ DROP ;

3

4 : STEPS 0 DO STEP LOOP ;

5

6 : DEGREES 4 * STEPS ;

Figure 5.5 Sample FORTH Program

81

For operation in the distributed processing environment, a

modified version of FORTH was developed for operation on the slave

processors. First the editor, assembler, and disk access functions

were removed since they would not be needed on the slave processors.

This reduced the size of the basic system to less than 4 Kbytes. The

standard command interpreter was then modified to accept commands and

parameters from the command buffer FIFOs. Extensions were made to the

FORTH system running on the master processor to allow the master to

download code into the slave processors, perform interprocessor memory

transfers and direct the execution of tasks in the various slave

processors. This yielded an integrated system where all processors

are programmed in a common language with little deviation from single

processor implementations of FORTH45.

CONTROL SYSTEM DESIGN CONSIDERATIONS

One of the first considerations in designing a control system

is the determination of the useful dynamic range of data that the

instrument can produce. In many cases the dynamic range of the

instrument is not limited by noise from the detector or the

electronics but is limited instead by "chemical noise" in the system.

This noise results from the chemical background in the sample being

analyzed. One method of increasing the dynamic range of the instrument

is to add more than one dimension of selectivity. An example of this

is the use of chromatography to separate the sample in time before it

is analyzed by the instrument. In the triple quadrupole mass

82

spectrometer, there are two stages of selection which results in a

usable dynamic range on the order of 108. That is, it is possible to

have a noise level that is eight orders of magnitude below the level

of maximum usable signal.

When a gas chromatograph is used with the triple quadrupole mass

spectrometer, a mass scanning rate of 1000 amu/sec or greater is

desirable to give adequate resolution of the GC profiles. At these

scanning speeds analog current measurement techniques are used with

a resulting dynamic range of from 105 to 106. This range is limited

by ion statistics at the low end and detector saturation at the high

end. Other sample introduction techniques that provide a less

transient sample allow slower scan rates. At slower scan rates, pulse

counting techniques can be used to extend the dynamic range to its

full value of 108. This wide dynamic range must be reflected in the

number representations and peak finding algorithms so that significant

data is not lost.

The triple quadrupole mass spectrometer also provides a

challenge to the designer of the control system because of the large

number of parameters that need to be controlled. These devices are

listed in Table 5.4 along with the simple mnemonic names that have

been assigned to them. The TQMS instrument is capable of operating in

three different ionization modes: electron impact ionization,

positive chemical ionization, and negative chemical ionization. It

can rapidly change between these different modes under computer

control. This provides an added level of complexity since the optimum

83

Table 5.4 TQMS devices and their mnemonic names

NAME DEVICE NAME DEVICE

EV Electron energy Q2 Quad 2 DC rod offset

REP Repeller Q3 Quad 3 DC rod offset

EIV EI ion volume MHV Multiplier high voltage

CIV CI ion volume M1 Mass selected by quad 1

EXT Extractor DM1 Quad 1 delta mass

L1 Ion source lens 1 RS1 Quad 1 resolution

L2 Ion source lens 2 M2 Mass selected by quad 2

L3 Ion source lens 3 M3 Mass selected by quad 3

L4 Interquad lens 1-2 DM3 Quad 3 delta mass

L5 Interquad lens 2-3 RS3 Quad 3 resolution

Q1 Quad 1 DC rod offset

84

value of all of the devices may be different for each of the different

ionization modes and thus the control system must be capable of

storing the desired device settings for each the mode. To achieve

optimum performance the value of some of the devices should be changed

as the mass command is scanned. This tracking of several devices with

mass increases the demands put on the control system since it

increases the number of calculations that must be performed in real

time as the data is acquired.

Other capabilities that are needed in the control system are the

ability to view the raw ion signal in real time and the need to

display the data that the control system has acquired. The display of

the raw ion signal is very important for proper tuning of the

instrument. The control system needs to offer a number of aids to the

operator so that the TQMS instrument can be interactively tuned using

the judgment of the user to optimize the instrument for the

experiment. The ability to display the acquired data allows the

operator to adjust the acquisition parameters so that the data is

collected properly and also permits the course of an experiment to be

monitored. Utilities for managing the data that the system acquires

are also important features of the control system.

IMPLEMENTATION OF TQMS CONTROL FUNCTIONS

An examination of the tasks involved in controlling a TQMS

instrument led to the identification of three major groups of

functions; ion path control, signal acquisition or detection, and

85

signal processing (peak finding)46. These functions correspond to the

efferent, afferent, and central types of vertical partitions discussed

earlier. The initial decisions of how to partition functions among

processors in a distributed system are the most critical in

determining overall system performance and capabilities. A

distributed processing system utilizing four Intel 8088 processors

was implemented to support these partitioning decisions. In this

system one processor acts as the system master and the other three

are operated as dedicated slave processors. Figure 5.6 illustrates

the interconnection of the master to the slave processors and the

connections of the slave processors to the instrument. The horizontal

arrows between the slave processors represent the status communication

hardware which is used to synchronize the slave processors during

scanning operations. The double-ended arrows connecting the master to

the various slaves indicates the path of data transfer through which

the master can directly access the memory in each slave. Finally,

commands and parameters are transferred from the master to each slave

through the command buffers depicted as a series of small boxes

between the master processor and each slave processor in Figure 5.6.

All of the communication between the instrument and the outside

world is provided by the master processor. The master processor

supports a number of devices in order to carry out its role. A CRT

terminal and keyboard are provided as the primary means of interaction

between the operator and the instrument. The master processor accepts

commands from the operator and directs the operation of the slave

processors to carry out these commands. A printer is provided so that

86

Figure 5.6 TQMS Control System Block Diagram

87

the operator can obtain a permanent record of results and system

parameters to consult during the course of an experiment. An 8 Mbyte

Winchester disk is utilized to store data acquired during an

experimental session. A link to a "host" minicomputer allows data to

be directly transfer to the "host" upon completion of an experiment.

An 8-inch floppy disk is provided to allow different operators to

maintain their own sets of instrument parameter settings and pre-

defined experimental procedures. The master is the most complex

processor in the system and as a result contains the largest amount

of memory, a total of 48 Kbytes. A basic FORTH system programmed into

EPROM (eraseable programable read only memory) occupies 8K bytes of

this memory space, leaving 40K available for control software and

data space.

The ionpath processor performs all of the efferent functions of

the control system. It contains interfaces to provide all of the

output signals needed to control the instrument. These interfaces

consist mainly of digital-to-analog converters to provide control

voltages and a few bytes of parallel output to control the mode

selection of the ionizer and quadrupole controllers. All of the DACs

have 12-bits of resolution and provide a +/- 10 volt output range

with the exception of the DAC's controlling the mass selection of

quadrupoles one and three. The mass control DACs have 16-bits of

resolution and an output range of 0-10 volts. In addition to many

interfaces, this processor is provided with 32 Kbytes of RAM (random

access memory) for programs and calibration tables. The software to

88

run the ion path slave is loaded into its memory by the master

processor.

One of the main functions of the ionpath slave processor is to

perform the transformation of information from a value in a given set

of units to a number to send to a DAC to generate the desired value

in the instrument. The ion path slave accepts values in experimental

units (mass, volts, etc.) from the master, performs the necessary

transformations and outputs the result to the instrument. The master

is never directly involved in setting instrument parameters and never

needs to deal with the values in any other terms than volts or mass.

The second function of the ion path slave is the generation and

control of the scanning functions. This is a logical task for this

processor since it has local control over the entire instrument. The

ion path slave accepts information from the master processor such as:

type of scan, range to be scanned and mass step increment to use, and

scanning rate. The slave processor then sets up the specified

instrument conditions and generates the desired scanning function.

During the course of the scan the ion path slave coordinates the

advancement of the scan with the operation of the other slave

processors. The ionpath slave also signals the completion of the scan

to all other processors.

The detection slave processor performs the afferent functions

of data acquisition and formatting. This processor controls the

interfaces that convert the analog output of the instrument into a

digital form. The principal function of this processor is to a acquire

89

a data point. It performs this function by sampling the ion current

from the instrument, possibly averaging the result to improve the

signal to noise ratio, and then converting the result to a standard

numeric format recognized by the other processing elements in the

system. Currently only analog data conversion is supported, however

this processor provides the system with the processing power need to

handle pulse counting hardware when it is installed. The detector

slave is provided with 16 Kbytes of RAM. However, with the limited

range of function currently demanded of this processor less than 8K

bytes are utilized.

The peak-finding slave processor is the main signal processing

element in the system. This processor combines positional output from

the ion path slave with intensity information from the detection

slave. Various criteria are used to determine the presence and

position of a peak in the mass spectrum. When a peak is detected this

processor records the position and intensity of the peak. This

information is transferred to the master processor when a scan is

completed. The peak finding slave has no direct connections to the

instrument. This processor is supplied with 24 Kbytes of memory, of

which 8 Kbytes are allocated to storage of information detected during

a scan.

In addition to illustrating the interconnections in the control

system, Figure 5.6 illustrates the sequence of commands each processor

might receive in order to acquire a daughter scan of a parent ion at

mass 100. The detection slave is passed the parameter 10 along with

90

the AVGS command to set the number of times to average the ion-current

value to 10. The detection slave is then instructed to prepare for a

daughter scan. The peak finding slave is passed the parameter 300

along with the command THRES. This sets the threshold for peak

detection to 300 counts. This processor is also instructed to prepare

for a daughter scan. When told to prepare for a daughter scan the

peak finding and detection slaves look to the ion path slave for

synchronization during the scan. Finally, the ion path slave is passed

the parameter 100 along with the MS1 command, which selects the parent

mass of 100 for the daughter scan. The parameters for the start (mass

10), end (mass 120), and increment of the scan (0.1 amu) are passed

to the slave processor prior to issuing the daughter scan command

DSCAN.

Figure 5.7 illustrates the synchronization and overlap of tasks

in the distributed processing system. This figure also illustrates

the increased throughput that can be achieved by the use of several

processors in place of a single processor. The data acquisition cycle

has been divided into five principal tasks; calculation of ionpath

values, setting the ionpath values, acquisition of a data point,

format conversions of an acquired data point, and peak finding

operations. In a single processor system these functions must be

performed in series. The distributed processing system allows these

tasks to be overlapped to some extent increasing the system

throughput.

91

Figure 5.7 Parallel Processing Timing Diagram

92

USER INTERFACE

In order to manage a large number of instrument parameters

effectively, special attention must be placed on the interface between

the user and the instrument. This involves consideration of how

parameters are displayed and modified, how commands are identified,

and the feedback provided the user. An important area of

operator/instrument interaction is how the user puts information into

the system. A wide variety of input options are available today

including predefined pushbuttons, keyboards, lightpens, voice,

touchscreens, joysticks and trackballs. One or more of these input

options may be used in a single system. The choice of input method

can greatly affect the ease of instrument use.

When defining system commands, one must attempt to reach a

compromise between short cryptic command names and long descriptive

command names. Short names may be easy to input, but they suffer from

a number of drawbacks. Among these drawbacks are the need for

extensive memorization by the user, cryptic command lines and easy

confusion between commands. Consider an example where the starting

and ending values of a scan must be set as well as the increment or

step size to use while scanning. If a two-letter command scheme is

used the resulting commands might look like SS, SE, and SI, for set

start, set end, and set increment respectively. The resulting commands

can hardly be described as descriptive of their function. Long

descriptive command names can be easy to learn and make command line

93

easy to read. Using the above example, descriptive command names might

take on the form SET-START, SET-END, and SET-STEP. While these are

very descriptive of their function, they are too long to be easily

entered on a keyboard frequently.

A useful approach to the definition of commands is to partition

the name into two sections; a general function class and a specific

function class, then abbreviating only one of these sections to help

keep the command both short and clear. Two examples of this from the

implementation of the TQMS control system are a group of parameters

setting functions and the scanning functions. The parameter setting

functions are like those outlined in the example above, which are

used for setting a start, end and step value. In this case the general

function was the setting of a parameter and the specific function was

the parameter to be set. The abbreviation "!" was chosen for the

general setting function yielding the command names !START, !END, and

!STEP. When the general abbreviation "!" is learned these commands

are read set-start, set-end and set-step. The second example concerns

the commands to direct the system to perform one of the five basic

scan types; a quad one scan, a quad three scan, a parent scan, a

daughter scan or neutral loss scan. In this case the general function

"scan" was retained as the descriptive function and the specific type

of scan was abbreviated to 1, 3, P, D, and N respectively. This

results in the five scanning commands 1SCAN, 3SCAN, PSCAN, DSCAN, and

NSCAN.

94

To help the user deal with the large number of parameters to be

set in a TQMS instrument, interactive screen editors were developed.

An example of this is the parameter editor PED (Figure 5.8) that

displays a table of the current settings of all devices in the system

as well as their start, end and step size scanning parameters. There

are more than seventy values in this table. To modify any value, it

is first selected by using cursor control keys on the terminal to

move a cursor to the desired value. The current cursor position is

indicated by displaying the selected value in reverse video. Once a

value is selected, the user may enter a new value at that location by

merely typing it in from the keyboard. This results in a "what you

see is what to change" type system, where there is no command structure

needed to identify the parameter of interest. This approach gives the

user access to many parameters at one time while making it easy to

select and modify an individual parameter. The use of such a screen

editor approach is superior to a menu drive parameter selection and

modify scheme, since the user can directly modify the parameter of

interest without first having to go through several levels of menu

selection.

To aid the user in instrument setup, tuning, and operation,

three types of display functions are provided by the control system.

The simplest is the numerical display of acquired data on the control

system terminal. A variety of text displays can be called up. A DLIST

command lists the data from the last scan acquired as a table of

scanned value (mass, lens voltage, etc.) and ion intensity. The SDIR

command displays a directory of all the scans taken during an

95

#1 MSU TUNE MODE: EI

 # DEV CURRENT START END STEP # DEV CURRENT START END STEP

 0 EV 70.0 0.0 0.0 0.0 16 M1 219.0 50.0 250.0 0.1

 1 REP 34.3 0.0 0.0 0.0 17 M2 0.0 0.0 0.0 0.0

 2 CIV 36.3 0.0 0.0 0.0 18 M3 69.0 20.0 80.0 0.1

 3 EIV 17.0 0.0 0.0 0.0 19 DM1 -15.1 0.0 0.0 0.0

 4 EXT 9.2 0.0 0.0 0.0 20 DM3 0.4 0.0 0.0 0.0

 5 L1 -16.6 0.0 0.0 0.0 21 RS1 5.8 0.0 0.0 0.0

 6 L2 -23.7 0.0 0.0 0.0 22 RS3 -70.7 0.0 0.0 0.0

 7 L3 -21.0 50.0 -50.0 -0.2 23

 8 Q1 -0.6 -20.0 20.0 0.1 24

 9 L4 1.9 -100.0 100.0 0.5 25

10 Q2 8.4 0.0 0.0 0.0 26

11 L5 -8.3 -100.0 100.0 1.0 27

12 Q3 0.8 0.0 0.0 0.0 28

13 MHV 2450.0 0.0 0.0 0.0 29

14 30

15 31

Figure 5.8 Parameter Editor Display

96

experiment, listing the type of scan, the range of the scans, and how

many data points were recorded. This type of text display provides

the user with some immediate quantitative feedback during and

immediately after a set of experiments.

The graphical display of acquired data is a second means of

immediate feedback the control system provides for the user. A

graphics display has been interfaced to the system to allow the

display of mass spectra and voltage sweeps. The display routines are

primarily used to produce an immediate visual representation of the

acquired data. Interactive display functions are not provided, nor

are extensive formatting capabilities available. These functions are

more appropriate for the data analysis system. However, it is

important for a user to be able to view his or her data during the

course of an experiment in order to evaluate the performance of the

instrument or determine the course of the experiment.

A third type of data display is provided to aid in the tuning

of the instrument. This display utilizes an oscilloscope to display

the ion current signal to the user in real-time. This allows the user

to directly observe the effects of changing various parameters. The

x-axis of the oscilloscope display is controlled by the ion path

processor using a DAC. The ion path processor also can control the

gain of the amplifier which supplies the ion current signal to the y-

axis of the oscilloscope. This system allows a flexible tuning aid

call a split screen display to be developed. The split screen display

can display between one and five mass windows 5 amu wide on the

97

oscilloscope screen. This provides side by side comparisons between

peaks that may be widely separated in mass. In addition, the user can

specify the individual gain to be used in displaying each mass window.

This allows mass peaks of greatly different intensities to be clearly

displayed simultaneously. The selection of mass windows to display,

the scan type to use (quad one, parent, daughter, etc.), and the gain

for each mass window are set up using an interactive screen editor

similar to the parameter editor described above. This editor provides

control of five mass window and gain selections for each of the five

basic scan types, yielding a total of 25 mass-gain pairs. The split

screen editor runs on the master processor while the ion path slave

processor controls the oscilloscope display. Whenever an entry is

changed in the split screen editor, this information is transferred

to the ion path slave to control the format of the display.

These three types of display provide the user with a variety of

immediate feedback about his or her experiment and the performance of

the instrument. The split screen display is a very helpful aid when

tuning the instrument. The ability to rapidly switch between different

scan types while tuning makes it much easier to optimize the

instrument performance for the various scan modes.

One of the most comfortable and useful forms of instrument

control implemented in this system is a function we have been calling

"softknobs". The "softknob" is an optical rotary encoder that

generates two streams of pulses when it is rotated. From these pulse

streams it is possible to determine the direction and degree of

98

rotation. One of the features of these rotary encoders is that they

have no limit on their rotation. The shaft can rotate in either

direction indefinitely. Four of these encoders have been interfaced

to the master processor as another form of user input.

The principal use of these softknobs is to allow the user to

manually adjust devices in the system. Figure 5.9 illustrates the

operation of the softknobs in the distributed control system.

"Softknobs" are connected to the master processor through an interface

that converts the two pulse streams to direction bits and a strobe

signal. The strobe signal is used to interrupt the master processor

each time a knobs position is changed. The processor then can read

the direction bits to determine whether to increment or decrement a

variable assigned to a device. Every 16 ms another task on the master

processor reads this variable and adjusts the parameter settings for

that device. It then sends any changes to the ionpath slave which

outputs the appropriate value to a DAC to change a device setting.

These "softknobs" offer several advantages over conventional

knobs and other input devices. Since their action is controlled by

software these knobs act as variable resolution devices. Each

revolution of a knob generates 250 pulses; however, the software is

free to interpret this in anyway necessary. One turn can generate a

full-scale change of 0-10 volts at the output by assigning 0.04 volt

value to each pulse. However, a knob could be programmed to generate

a full-scale change for 10 revolutions by assigning a 0.004 volt value

to each pulse. Non-linear and cyclical functions can be assigned to

99

Figure 5.9 Softknobs Functional Diagram

100

a knob with the appropriate software. The software could be programmed

to ramp a signal up to its maximum and back down again in a cyclical

manner as a knob is continuously rotated in one direction. The knobs

can be reassigned in software, so that a limited number of knobs can

control a large number of devices in any combination, thus reducing

the costs while retaining manual control features. More than one knob

may be assigned to a single device to provide coarse and fine

adjustments. The software can limit the output range of a knob so

that when a limit is reached no change occurs with further rotation

of the knob. The possibilities are endless.

The most important feature of the "softknobs" is that they

provide a familiar and effective method by which the user may set

instrument parameters without having to develop a separate set of

manual and computer controls. As a result of the computer system

actually setting the values, the computer knows the value each device

is set to and can allow the user to store and retrieve them. In

addition, the device setting can be recorded along with the data to

form a complete data base.

A final area of user interaction being investigated is the

usefulness of voice output from the control system. A Votrax Type-n-

talk47 has been interfaced to the master processor. This unit can

accept text information from the control system and convert it into

synthesized speech. We are investigating the usefulness of this

technique for error reporting. The audible output of the speech

synthesis module allows the operator to move about the lab performing

101

other tasks and still be apprised of any error conditions that may

develop.

USER PROGRAMABILITY

The ease with which a user can define new commands can greatly

influence how effectively an instrument can be utilized. Table 5.5

summarizes function of several of the commands available in the TQMS

control system. These are all high-level mass spectrometry commands

that a user must learn to use the instrument. Commands can be entered

singly or several commands may be entered at once on one line. The

use of FORTH allows a novice user who understands these basic commands

to create new commands to aid him or her during an experiment.

Figure 5.10 contains a number of examples of new command

definitions generated from the basic set in Table 5.5 and how they

might be used. Line 1 contains the definition of one of the existing

commands given in Table 5.5, MS1. This command interprets the number

on top of the stack as a mass value and sets quadrupole one to select

the specified mass. The definition of MS1 consists entirely of other

high-level commands created for the control system. M1 selects the

mass of quadrupole one as the parameter to be modified, and SET

outputs the value on top of the stack to the device, in this case

quadrupole one. Notice that the creation of this new command required

the user to have no knowledge of the FORTH language other than how to

define a new word.

102

Table 5.5 Selected control system commands and their function.

COMMAND FUNCTION

1SCAN Quad one scan

3SCAN Quad three scan

PSCAN Parent scan

DSCAN Daughter scan

NSCAN Neutral loss scan

DISP Plot acquired data

DLIST List acquired data points

KNOBS Activate softknobs

PED Activate parameter editor

SPLITS Setup split screen display

SET Set a selected device to a value

MS1 Set quad one to a specified mass

MS3 Set quad three to a specified mass

ADD Add two spectra together

SUB Subtract two spectra

SDIR Display directory of acquired scans

EI Select EI ionization mode

+CI Select positive chemical ionization mode

-CI Select negative chemical ionization mode

HELP Display help information

103

 0 (Mass Spec Programming Examples)

 1 : MS1 M1 SET ;

 2

 3 58.0 MS1 DSCAN 72.0 MS1 DSCAN 100.0 MS1 DSCAN

 4

 5 : DEMO1 58.0 MS1 DSCAN 72.0 MS1 DSCAN 100.0 MS1 DSCAN ;

 6

 7 : DAUGHTERS BEGIN MS1 DSCAN DUP 0= END ;

 8

 9 58.0 72.0 100.0 DAUGHTERS

10

11 : DEMO2 58.0 72.0 100.0 DAUGHTERS ;

Figure 5.10 Mass spectrometry programming examples

104

Line 3 in Figure 5.10, demonstrates how the MS1 command might

be used. In this example, the experiment requires that daughter

spectra be obtained for the parent masses 58, 72, and 100. As mentioned

earlier, a series of commands can be issued on one line. In this case

MS1 is used to first select the parent ion at mass 58, then a DSCAN

command causes a daughter spectrum to be acquired. This type of

command sequence is repeated for the parent masses at 72 and 100 amu.

If the command sequence given in line 3 needed to be repeated

frequently, a new word could be created to perform this function.

Line 5 illustrates the definition the word DEMO1 which performs this

command sequence. The definition of this new command consists of

merely enclosing the sequence of mass spec commands between a name

for the new command (DEMO1) preceded by a ":" and a ";". Now the three

different scans can be acquired by issuing the single command, DEMO1.

Although this approach to creating a new command is easy, it is

not very versatile since each mass must specified in the definition.

If it is frequently necessary to perform a series of daughter scans

at a number of different parent masses, it would be advantageous if

there were a command that allowed this to be done easily. The

definition of such a command, DAUGHTERS, appears on line 7 of Figure

5.10. This command accepts a list of one or more parent masses on the

stack, and performs a daughter scan for each parent mass. The

definition of DAUGHTERS includes both high-level mass spec commands

and basic FORTH words for program flow control. Reference 48 describes

the operation of most standard FORTH words in detail. The word BEGIN

marks the beginning of a loop. MS1 takes a number from the stack and

105

sets quadrupole one to that mass, then DSCAN performs the daughter

scan. DUP makes a copy of the number on top of the stack, and the 0=

tests if this number equals zero. This is used to detect the end of

the list of parent masses since the top of an empty stack always has

a zero in it. If the number does not equal zero the word END causes

the commands following the BEGIN to be repeated. When the last parent

mass is processed, as indicated by a zero on the stack, the command

is terminated. The use of the DAUGHTERS command is illustrated on

line 9. This new word can then be used to create another new command

DEMO2 that performs the same functions as the previous DEMO1 command.

The definition for DEMO2 is given on line 11 of Figure 5.10. This is

an example of how high-level mass spec commands can be combined with

more conventional programming constructs to create a powerful new

command.

SUMMARY

In an advanced control system, the interaction between the

operator and the system can occur on a number of different levels.

These shells of complexity allow an unsophisticated user to

successfully operate the instrument with a small number of commands

while providing more capabilities to the more knowledgeable user. In

the system that controls the TQMS instrument there are three different

levels; the simple command level, an intermediate level which provides

facilities for the generation of new experimental methods, and the

most advanced level which allows new instrument capabilities to be

106

added to the system. The knowledge that is needed for each level is

simply an expansion of that required for the previous level.

In light of the continued rapid pace with which the electronics

and computer industries are developing, the future possibilities for

chemical instrumentation are very bright. A possibility is the

development of an intelligent control system which would be capable

of dynamic optimization of the instrument during the course of an

experiment. This system would make its decisions on the tradeoffs

between sensitivity, selectivity, analysis time, and sample size based

on information about the experimental goals. A second stage might be

the connection of such a control system to an intelligent data

analysis system which would interactively work with the control system

to perform an analysis. The data analysis system would first define

a set of rules for the control system by interaction between the

operator and an "expert system" program. These rules would be used to

acquire a set of data which would then be interactively analyzed by

the data analysis system and the operator. This analysis would produce

a new set of rules that the control system could employ for data

collection. The cycle of data collection and experiment definition

would continue until further improvements in the information obtained

from the instrument was not possible. This could lead to an

"integrated" laboratory which would combine the intelligent

instruments with automated sample handling. In this approach all of

the instruments in the laboratory would be connected together to an

"expert system" data analysis system. The operator would then interact

with this system to define the objectives of the analysis.

107

Interactive analysis of the sample could then be performed on a number

of instruments and the combined results of all of the experiments

would be used to complete the analysis of the sample.

108

REFERENCES

17 Betterridge, D., Goad, T.B., Analyst 106(1260), 257, (1981)

18 Perrin, D.D., Talanta 24(6), 339, (1977)

19 Peixin, H., Avery, J.P., Faulkner, L.R., Anal. Chem. 54(12), 1313A,

(1982)

20 Dessy, R.E., Anal. Chim. Atca 103, 459, (1978)

21 Ziegler, E., Anal. Chim. Acta 147, 77, (1983)

22 Digital Equipment Corp., Maynard,MA

23 Hoffman, P.A., Enke, C.G, Computers & Chemistry 7(2), (1983), 47-50

24 Myerholtz, C.A., Newcome, B.H., Enke, C.G., Rev. Sci. Inst. submitted

1983

25 Susaki, H., Minami, S., Appl. Spec. 36(5), 553, (1982)

26 Enke, C.G., Proc. 28th IUPAC Conference, Vancouver,BC (1981)

27 Fathi, E.T., Krieder, M. Computer, March 1983, P. 23.

28 Searle, B.C., Freberg, D.E., Computer, 22, Oct. 1975.

29 Anderson, G.A., Jensen, E.D., Computer Surveys, 7(4), (1975), 197:

30 Dessy, R.E, Anal. Chem. 54(11), (1982), 1167A

31 Dessy, R.E., Anal. Chem. 54(12), (1982), 1295A

32 Newcome, B.H., Enke, C.G., Rev. Sci. Inst.

33 J.T. Lawson, M.P. Mariani, Proceedings of the IEEE, 358 (1978)

34 Yourdon, E., Constantine L.L., "Structured Design", Yourdon Incl., 1133

Ave. of the Americas, New York, N.Y., February 1976.

35 Newcome, B.H., Enke, C.G., Rev. Sci. Inst.

36 Intel Corp., Bowers Rd., Santa Clara, CA

109

37 Jones, L.M. Leroi, G.E., Myerholtz, C.A., Enke, C.G., Rev. Sci. Inst.

Accepted for publication 10/83

38 Aiello, P.J., Enke, C.G, ACS Symposim "Image Devices in Spectroscopy", in

press

39 Stults, J.T, Newcome, B.H., Myerholtz, C.A., Enke, C.G., 31st Annual ASMS

conference, Boston, MA, 1983

40 Dessy, R. Anal. Chem 55(6), 1983, 650A

41 Dessy, R. Anal. Chem 55(7), 1983, 756A

42 C.H. Moore, Astrom. Astrophys. Suppl. 15., 497, (1974)

43 J.S. James, Byte 5, No. 8, 100 (1980)

44 S.M. Hicks, Electronics, March 15, 1979, p. 114

45 Myerholtz, C.A., Enke, C.G. Rev. Sci. Inst.

46 Myerholtz, C.A., Newcome, B.H., Enke, C.G., 31st Annual Conference,

American Soc. for Mass Spec., Boston, MA, (1983)

47 Federal Screw Works, Troy, MI

48 Brodie, L.,"Starting FORTH", Prentice Hall, Englewood Cliffs, NJ, 1981

110

Part II. Screening Applications for Fuel

Analysis

111

Chapter 6 : Screening Aviation Fuels for

Thiophenes

112

Screening Aviation Fuels for Thiophenes

with Triple Quadrupole Mass Spectrometry

Carl A. Myerholtz

Adam J. Schubert

Christie G. Enke

Department of Chemistry

Michigan State University

East Lansing, MI 48824

113

 ABSTRACT

The application of triple quadrupole mass spectrometry (TQMS)

to the screening of jet aircraft fuels for thiophenes is examined.

Jet aircraft fuels present a complex hydrocarbon matrix which makes

identification of low-level components difficult. Spectra of the

collisionally activated dissociation (CAD) fragments of several

thiophenes and potentially interfering compounds were obtained. The

fragmentation reactions found to be characteristic of the thiophenes

are the loss of a 45 amu neutral fragment and the generation of a 97+

daughter ion. These screening reactions were applied to untreated

samples of JET A aviation fuel, and readily detected the presence of

thiophene with 0-4 carbons in side-chains. The validity of these

screening reactions was confirmed by the use of GC/MS/MS.

114

A number of studies have shown that low level concentrations of

heteroatom containing species can affect two important

characteristics in jet aviation fuels49,50,51,52. These are the storage

stability and thermal stability of the fuel. The storage stability of

a fuel is a measure of how well a fuel can tolerate long term exposure

to temperatures between 50-125 C, without polymerizing and forming

sediments. The thermal stability of a fuel is a measure of the amount

of deposit formation the fuel produces when subjected for short

periods of time to temperatures in the 200-400 C range. These are the

conditions a fuel experiences in a jet engine where significant

deposit formation can have serious consequences. Knowledge of the

presence and distribution of various heteroatom containing species

can aid studies of fuel storage and thermal stability. This

information becomes more important when the suitability of alternate

sources of feedstocks such as shale oil are considered.

Jet fuels present a complex hydrocarbon matrix which makes

identification of low-level components difficult. The probability of

finding unique molecular ion peaks (with a unit mass resolution mass

spectrometer) for each compound or class of compounds in the raw fuel

mass spectrum is very low. Triple quadrupole mass spectrometry offers

several modes of component specificity other than the molecular ion

mass. For particular components, characteristic combinations of

parent and daughter masses can provide a high degree of selectivity.

In addition, particular daughter ion or neutral loss masses can be

highly indicative of certain compound classes.

115

In the past, the use of mass spectrometry to detect small

quantities of heteroatom species in complex hydrocarbon mixtures such

as jet fuels required the separation of the aromatic and polar species

from the aliphatic species that make up the bulk of the fuel. This

can be a very time consuming operation. The goal of this project was

to utilize the separatory power of the triple quadrupole mass

spectrometer to determine if a screening procedure for selected

heteroatom-containing species which did not include prior separation

could be developed. The thiophenes were selected as the target

compound class since their presence has been reported in jet fuels53

and there is evidence that they affect the thermal stability of

fuels54,55

EXPERIMENTAL SECTION

Two TQMS instruments were employed in the course of this study.

The initial exploratory studies were performed on a triple quadrupole

mass spectrometer built in our laboratory56, while the remainder of

the work was performed on a model ELQ-400-3 instrument manufactured

by Extranuclear Inc. of Pittsburg, PA.

Instrumental Parameters. Both instruments used in this study

were operated in the electron impact (EI) ionization mode, with 20 eV

of electron energy. The ion source was operated at 100 C. Argon of

99.9% purity was used as the collision gas in the second quadrupole

region for all collisional activated dissociation experiments. The

argon pressure was maintained between 0.5 and 1.5 mTorr. Ion energies

116

in the range of 10-20 eV were employed to induce fragmentation. All

data were acquired using a scanning rate of 100 amu/sec.

Sample Introduction. Samples of the reference compounds and

fuels were introduced in liquid form into a heated inlet system by

use of a syringe. The heated inlet system had a 500 mL expansion

volume that was maintained at 150 C. Sample sizes varied between 1-5

uL. The gas chromatograph was operated at a 1 mL/min. flow rate of

helium and a split ratio of 20:1. During the GC experiments the

injector, transfer line and ion source were operated at 200 C, 250 C,

and 250 C respectively. The GC oven temperature was programmed for 4

C/min heating rate starting at 50 C, continuing to 250 C and holding

at 250 C. Sample injections into the GC were between 0.5 and 1.0 uL.

Chemicals. All samples of pure compounds were purchased from

either Chemservice Inc. or the Aldrich Chemical Co. The fuel samples

were obtained from Dr. Gary Seng at NASA's Lewis Research Center.

RESULTS AND DISCUSSION

The general formula for the thiophenes is CnH2n-4S, forming a

homologous mass series of 84, 98, 112, 126, etc. The parent mass alone

is inadequate to identify the thiophenes since the cycloalkanes and

olefins are isobaric with the thiophene family. Conventional mass

spectrometers are unable to resolve these peaks unless they have a

high resolving power (greater than 1/31,000 at 100 amu) or are

combined with a separation technique such as GC or LC.

117

Mass spectral data from collision activated dissociation spectra

obtained for a number of thiophenes and compounds that are isobaric

with the thiophenes are presented in Table 6.1. These data were

obtained by setting quadrupole 1 to transmit the parent ion, operating

quadrupole 2 in the radio frequency only mode while it was filled

with argon, and scanning quadrupole 3 to obtain the spectrum of all

the collision activated dissociation (CAD) generated daughter ions57.

The daughter spectra of the various thiophenes were studied to

identify dissociation reactions that are unique or characteristic of

thiophenes. The loss of a neutral fragment of 45 amu (representing

CHS) was common to all the thiophenes and was not observed in any of

the isobaric compounds that may be present in a complex hydrocarbon

mixture. The formation of a 45+ fragment ion representing CHS+ was

also observed. In addition, all of the substituted thiophenes generate

an intense 97+ daughter ion. Figure 6.1 illustrates some proposed

decomposition mechanisms for the loss of a 45 amu neutral fragment

and the generation of +97 daughter ions from different thiophenes.

Table 6.2 shows, in a condensed form, the results of the search for

identifiable characteristics of thiophenes. As indicated earlier,

parent mass alone is inadequate to identify the presence of a

thiophene. However, the neutral loss of 45 amu, qualified by the

parent mass, provides a unique identification for the thiophenes.

A TQMS instrument is operated in the neutral loss mode to

identify all the ions in a mixture that undergo a fixed neutral loss.

In the neutral loss mode, quadrupoles 1 and 3 are both scanned in

unison at a fixed mass separation. To be detected, an ion selected by

118

Table 6.1 CAD spectra of reference compounds

COMPOUND PARENT ION FRAGMENT IONS

Thiophene 84 (100.0) 69 (3.2), 58 (24.0), 45 (5.6), 39 (1.1)

2-Methylthiophene 98 (36.1) 97 (100.0), 69 (0.8), 54 (3.7), 53 (3.6),

 45 (1.9), 39 (1.6)

2,5 Dimethylthiophene 112 (100.0) 97 (87.2), 67 (1.1), 53 (1.0), 45 (0.7)

2-Ethylthiophene 112 (11.7) 97 (100.0), 69 (0.7), 67 (0.4), 53 (4.2),

 45 (1.1)

Cyclohexane 84 (90.6) 69 (24.6), 56 (100.0), 55 (35.0),

 42 (24.1), 41 (56.2), 39 (2.0), 29 (1.7)

Methycyclohexane 98 (79.7) 96 (3.6), 83 (100.0), 82 (37.0),

 70 (14.8), 69 (19.5), 56 (27.0),

 55 (79.3), 42 (18.8), 41 (24.5), 29 (1.9)

1-Hexene 84 (62.3) 69 (33.1), 56 (52.9), 55 (100.0),

 42 (47.1), 41 (34.2), 29 (8.2)

2-Heptene 98 (59.8) 70 (22.9), 69 (57.4), 56 (100.0),

 55 (70.6), 43 (4.7), 42 (8.9), 41 (34.9)

2-Octene 112 (54.6) 83 (23.9), 70 (57.6), 56 (43.8),

 55 (100.0), 42 (17.8), 41 (34.6)

n-Hexane 86 (48.5) 57 (100.0), 56 (59.1), 43 (62.9),

 41 (50.8), 29 (52.8), 27 (6.6)

n-Heptane 100 (33.4) 71 (45.7), 70 (21.9), 57 (47.5),

 55 (12.1), 43 (100.0), 41 (24.0),

 29 (17.3), 27 (2.1)

n-Octane 114 (14.1) 85 (25.2), 84 (10.9), 71 (14.4),

 70 (6.7), 57 (26.0), 55 (7.6), 43 (100.0),

 41 (12.7), 29 (7.8

119

Figure 6.1 Thiophene Decomposition Mechanisms

120

Table 6.2 Summary of characteristic ions

 PARENT MASS NEUTRAL DAUGHTER

 LOSS ION

 84 98 112 86 100 114 45 97 45

 --

 | | |

 THIOPHENE | X | X | X

 --

 2-METHYL- | | |

 THIOPHENE | X | X | X X

 --

 2-ETHYL- | | |

 THIOPHENE | X | X | X X

 --

 DIMETHYL- | | |

 THIOPHENE | X | X | X X

 --

 | | |

 1-HEXENE | X | |

 --

 CYCLO- | | |

 HEXANE | X | |

 --

 | | |

 2-HEPTENE | X | |

 --

 METHYL- | | |

 CYCLOHEXANE| X | |

 --

 | | |

 2-OCTENE | X | |

 --

 | | |

 n-HEXANE | X | X |

 --

 | | |

 n-HEPTANE | X | X |

 --

 | | |

 n-OCTANE | X | X |

 --

121

quadrupole 1 must undergo the selected neutral loss in quadrupole 2

in order to be transmitted by quadrupole 3 to the detector. In the

present instance, the neutral loss mode produces a spectrum of all

the parent ion masses which undergo a loss of 45 amu upon collision.

In order to obtain a scan of all ions that generate a given daughter

ion, such as 97+, the parent scan mode is used. The parent scan

involves selecting the desired daughter ion with quadrupole 3 while

quadrupole 1 is scanned over the desired mass range. An ion must be

transmitted by quadrupole 1, undergo CAD in quadrupole 2, and generate

the particular fragment ion selected by quadrupole 3 to be detected.

As suggested by the study of the fragmentation of pure thiophenes

and potentially interfering compounds, the loss of 45 was used as a

primary screening characteristic and the formation of a 97+ daughter

ion was used as a secondary characteristic to confirm the presence of

thiophenes in the sample. In Figure 6.2, the results of scanning

samples of Jet A and a shale oil derived fuel for a neutral loss of

45 are presented. Low ionization potentials (20 eV) were used in an

attempt to minimize fragmentation of the samples in the source58. The

peaks at 84, 98, 112, 126, 140, 154, and 168 amu indicate the presence

and distribution of thiophenes with 0-6 carbons in side chains. Figure

6.3 shows a portion of the raw mass spectra for Jet A and the shale

oil fuel covering the same mass range as the neutral loss scans

presented in Figure 6.2. Comparisons of the spectra in Figures 6.2

and 6.3 illustrate dramatically how readily a TQMS instrument can

detect components in complex mixtures. Figure 6.4 illustrates the

results of scans of the two fuel samples for parents of the +97

122

Figure 6.2 45 Neutral Loss from Jet A and Shale oil

123

F

igure 6.3 Raw Spectra of Jet A and Shale oil

124

Figure 6.4 97+ Parent scans of Jet A and Shale oil

125

daughter ion used to confirm the presence of substituted thiophenes.

The peaks at 98, 112, 126, 140, 154, and 168 are readily apparent and

support the results presented in Figure 6.2.

To confirm the identification of the thiophenes detected in Jet

A by the rapid screening technique, additional experiments were

performed with the aid of a gas chromatograph interfaced to the triple

quadrupole mass spectrometer. These experiments involved the use of

a technique known as multiple reaction monitoring (MRM). MRM is the

GC/MS/MS analog of multiple ion monitoring (MIM) routinely performed

with conventional GC/MS instruments. Instead of selecting a series of

fixed mass settings at which to repetitively monitor the ion current,

a series of parent-daughter mass pairs are selected to monitor the

ion currents arising from selected CAD reactions in the collision

cell. For example, to monitor for the 45 neutral loss from thiophene,

quadrupole one would be set to transmit ions of mass 84, quadrupole

two would be pressurized with collision gas, and quadrupole 3 would

be set to transmit ions of mass 39. Similarly, several other parent-

daughter reaction pairs can be monitored sequentially and repetitively

in an MRM experiment.

To determine the retention times of the thiophenes, a standard

mixture of four thiophenes was prepared in a dodecane solvent. The

resulting MRM chromatograms are presented in Figure 6.5 and were used

obtained the retention times of the reference thiophenes. This

experiment was repeated with a 1.0 ul sample of Jet A. Table 6.3 lists

the thiophenes present in the mixture, the reactions used to monitor

126

Figure 6.5 Multiple Reaction Monitoring Chromatograms

127

Table 6.3 Thiophenes, reactions, retention times

 Retention Time

 (sec.)

Compound Monitoring Reaction Std. Jet A

--

Thiophene 84 -> 39 48.0 51.0

2-Methylthiophene 98 -> 53 85.8 87.9

2-Ethylthiophene 112 -> 67, 97 -> 53 154.9 155.2

2,4 Dimethylthiophene 112 -> 67, 97 -> 53 161.1 163.0

128

each thiophene, and the reference retention times and the retention

times observed from Jet A. The retention times of the components of

Jet A monitored by the reactions attributed to the thiophenes match

the observed retention times for the reference thiophene mixture.

These results confirm the ability of the selected screening reactions

to detect the presence of thiophenes in complex mixtures such as jet

aviation fuels.

CONCLUSIONS

This work illustrates a method for the development of a rapid

screening procedure for a particular compound class using triple

quadrupole mass spectrometer. The separatory power of a TQMS

instrument allows detection of preselected trace components in complex

matrices without the need for prior sample work up or additional

chromatographic techniques. The capability of TQMS to analyze fuel

samples directly can reduce sample handling and analysis time to about

5 minutes. The ability of a triple quadrupole mass spectrometer to

detect a minor component in such a complex hydrocarbon mixture can

make it a valuable tool in fuel stability studies.

ACKNOWLEDGMENTS

The authors would like to thank the National Aeronautics and

Space Administration for financial support of this project, and the

people at Extranuclear Inc. for their assistance and use of their

equipment.

129

REFERENCES

49 Dahlin. K.E.; Daniel, S.R.; Worstell, J.H. Fuel 1981, 60, 477-480

50 Tutubalina,V.P.; Gabdrakhmanov, F.G.; Korotkova, E.G. Deposited Doc.

1980, SPSTL 460Khp-D80

51 Hazlett, R.N.; Hall, J.M. Prepr. - Am. Chem. Soc., Div. Pet. Chem. 1981,

26(2), 613-619

52 Worstell, J.H.; Daniel, S.R. Fuel 1981, 60, 481-484

53 Bol'shakov,G.F., Izv. Vyssh. Uchebn. Zaved., Neft Gaz 1976 19(5), 51-3

54 Chertkov, Y.B., Chem. Technol. Fuels Oils, (1976),154

55 Heneman, F.C. Gov. Rep. Announce. Index 1981, 81(26), 5656

56 R.A. Yost, C.G. Enke, Anal. Chem. 50, 1251A (1979)

57 R.A. Yost,C.G. Enke,D.C. McGilvery,J.D. Morrision, Int. J. of Mass

Spectrom. and Ion Physics, 30, 127 (1979)

58 Aczel, T., Rev. Anal. Chem., 1, 226 (1972)

130

Chapter 7 : Screening Fuels for Selected

Species

131

Screening Middle Distillate Fuels for Selected Species

by Triple Quadrupole Mass Spectrometry

Carl A. Myerholtz

Christie G. Enke

Department of Chemistry

Michigan State University

East Lansing, MI 48824

132

ABSTRACT

The use of triple quadrupole mass spectrometry, an MS/MS

technique, to detect selected species in middle distillate fuels has

been examined. Collision-activated dissociation (CAD) spectra were

obtained for reference compounds from several heteroatom-containing

compound classes. These included the thiophenes, thiols,

nitrobenzenes, pyridines and anilines. The alkylbenzenes were

examined in addition to heteroatom-containing species. The CAD results

were used to select screening reactions for each compound class. The

effectiveness of these screening reactions was demonstrated by

identifying the presence of various species in samples of Jet A

aviation fuel, a shale oil derived fuel and No. 2 diesel fuel. Triple

quadrupole mass spectrometry can be used to rapidly identify a number

of different components in middle distillate fuels. This information

can be an aid to studies of fuel composition and stability.

133

In recent years, a number of studies have shown that the thermal

and storage stabilities of middle distillate fuels are affected by

low level concentrations of heteroatom containing species59,60 ,61 ,62

Thermal stability is the resistance of a fuel to deposit formation

when stressed at temperatures encountered in an operating engine.

Storage stability is the resistance of a fuel to the formation of

gums under storage conditions that are less strenuous, but of longer

duration than the thermal stresses encountered in an engine. Studies

of thermal and storage stabilities of fuels would be aided by

knowledge of the presence and distribution of various heteroatom-

containing species and how they change under thermal stress. This

information becomes even more important when the suitability of

alternate sources of feedstocks such as shale oil are considered.

Triple quadrupole mass spectrometry (TQMS) is a tandem mass

spectrometry or "MS/MS" technique. An MS/MS instrument consists of

two mass analyzers separated by an ion-molecule collision region.

Ions of a selected mass are allowed to pass through the first mass

analyzer and into the collision region. There the ions undergo

collision-activated dissociation (CAD). The second mass analyzer is

then used to select particular masses of fragment ions for detection.

A TQMS instrument utilizes two quadrupole mass filters as mass

analyzers. The collision cell is also a quadrupole, but one that is

operated in the "RF only" mode. This mode provides a minimum of mass

discrimination and acts rather as an "ion pipe" to contain the

reactant ions and all the ionic products of the ion-molecule reaction.

Without the quadrupole collision chamber, losses due to scattering

134

would be excessive. A block diagram of a TQMS instrument is shown in

Figure 7.1. The three quadrupoles are identified by number, beginning

at the source. Ions undergo CAD in the center quadrupole (number 2)

at much lower energies (5-30 eV) than other MS/MS techniques which

use magnetic and electric sectors and operate at collision energies

in the 3-10 keV range63.

A TQMS instrument can be operated in a variety of modes to

perform different types of experiments. Figure 7.2 illustrates the

operation of a triple quadrupole mass spectrometer for three types of

experiments useful in mixture analysis. In addition to mixture

analysis applications, TQMS can be a useful tool in the elucidation

of the structure of pure compounds64.

In MS/MS the term "parent" is used to describe an ion selected

from the ion source by the first mass analyzer. The term "daughter"

is used to describe an ion that is a result of fragmentation of a

"parent ion". In TQMS, the daughter ions are produced by CAD in the

the collision region. The operation of a TQMS instrument to perform

the three types of MS/MS experiments utilized in this study is

described below.

Daughter Scan. Quadrupole one is set to transmit only ions of a

selected mass from the source. These ions undergo CAD in the collision

cell and generate a number of fragment or daughter ions. Quadrupole

three is scanned to allow these fragment ions to be detected. The

result is a spectrum of all the daughter ions generated by the parent

ion selected by quadrupole one. This type of experiment is

135

Figure 7.1 TQMS instrument block diagram

136

Figure 7.2 TQMS modes used in Mixture analysis

137

particularly useful during the investigative and developmental phase

of a study such as described in this paper.

Parent Scan. This type of experiment generates a spectrum of all

parent ions in the source that produce a selected daughter ion.

Quadrupole three is set to transmit only ions of a selected mass from

the collision cell. Quadrupole one is scanned over the desired mass

range. All ions that undergo CAD to generate a daughter ion of the

mass selected by quadrupole three are detected. The resulting spectrum

consists of parent ion masses which fragment to form the selected

daughter mass.

Neutral Loss Scan. Quadrupoles one and three are scanned in unison,

but with a constant difference in selected mass. All ions that undergo

a neutral loss equal to the mass offset of quadrupoles one and three

will be detected. The result is a spectrum of parent ion masses which

undergo the selected loss of neutral mass upon fragmentation.

The ability to perform several types of experiments on a sample

with a single instrument makes TQMS an attractive option for rapid

screening applications.

The complex hydrocarbon matrix of the middle distillate fuels

makes the determination of low-level components difficult. The chance

of finding unique molecular ion peaks in the mass spectrum of a raw

fuel for each compound or class of compounds is almost negligible.

The different types of experiments that can be performed with a triple

quadrupole mass spectrometer offer several modes of component

138

specificity other than the mass of the molecular ion. Characteristic

combinations of parent and daughter ion masses can provide a high

degree of selectivity for particular components. In addition,

particular daughter ion or neutral loss masses may be highly

indicative of certain compound classes.

The detection of selected aromatic and heteroatom species in a

complex hydrocarbon matrix such as Jet A by mass spectrometry has

generally required the separation of the aromatic and polar species

from the aliphatic species that make up the bulk of the fuel. The

goal of this project was to utilize the tremendous separatory power

of the triple quadrupole mass spectrometer to develop screening

procedures for selected aromatic and heteroatom species that do not

require prior separation. The compound classes selected for

investigation included the thiophenes, alkylbenzenes, pyridines,

anilines, and the nitrobenzenes. The pyridines and thiophenes are of

particular interest since their presence has been reported in middle

distillate fuels and there is evidence that they have an adverse

effect on the stability of these fuels65,66 ,67 ,68.

EXPERIMENTAL

Instrumental. The instrument employed in this study was a model ELQ-

400-3 triple quadrupole mass spectrometer manufactured by

Extranuclear Inc. of Pittsburg, PA. Electron impact (EI) ionization

with 20 eV of electron energy was used throughout the course of this

study. The ion source was operated at 100 C. Argon of 99.9% purity

139

was used as the collision gas in the second quadrupole region for all

collisionally-activated dissociation experiments. The argon pressure

was maintained at 1.5 mTorr. Ion energies in the range of 10-20 eV

were employed to induce fragmentation. Data were acquired using

scanning rates between 100 and 250 amu/s.

Sample Introduction. An all-glass, batch type inlet system with a 500

ml expansion volume was used to introduce liquid samples into the

mass spectrometer. Samples varying between 1-5 ul were injected into

the inlet system by means of a syringe. Several minutes were allowed

for the sample to completely vaporize before a valve on the inlet

system was opened to introduce the sample into the ionization region

of the mass spectrometer.

Chemicals. All pure compounds used in this study were purchased from

either Chemservice Inc or the Aldrich Chemical Co. The Jet A, and

shale oil derived fuel samples were obtained from NASA, Lewis Research

Center, Cleveland, OH, and the diesel fuel sample was obtained from

a local service station.

RESULTS AND DISCUSSION

In order to identify those fragmentation characteristics which

may be useful for screening purposes, several compounds in each class

were examined. The daughter scan mode of the TQMS instrument was used

for this study to obtain the fragmentation spectra of the species of

140

interest. The results of these fragmentation experiments are listed

in Table 7.1. These results were then examined to identify

characteristic CAD reactions for each class of compounds. It is

desirable to have two characteristic reactions for a compound class

to help ensure the accuracy of the screening procedure.

Examination of the CAD results for the thiophenes led to the

identification of two reactions suitable for screening applications.

One of these is the loss of 45, representing the loss of CHS from

fragmentation of the thiophenic ring. The second screening reaction

is the generation of a 97+ daughter ion by all of the substituted

thiophenes. This leads to a screening procedure which includes a

neutral loss scan for the loss of 45 as the primary screening reaction

and a parent scan for the parents of 97+ daughter ions as a secondary

screening reaction to confirm the presence of the thiophenes69. All

of the thiophenes also generated a 45+ daughter ion. This fragment

ion could be used as additional confirmation of the results obtained

by the principal screening reactions outlined above.

The study of the alkylbenzenes yielded two characteristic

daughter ions suitable for screening purposes. These daughter ions

appear at 65 and 91 amu. The 65+ daughter ion is a result of

fragmentation of the aromatic ring. The daughter ion at 91 amu is a

result of the formation of the well known resonance-stabilized

tropylium ion that is particularly characteristic of the

alkylbenzenes70.

141

Table 7.1 Daughters of Reference Compounds.

COMPOUND PARENT ION FRAGMENT IONS

Thiophene 84 (100.0) 69 (3.2), 58 (24.0), 45 (5.6), 39 (1.1)

2-Methylthiophene 98 (36.1) 97 (100.0), 69 (0.8), 54 (3.7), 53 (3.6),

 45 (1.9), 39 (1.6)

2,5 Dimethylthiophene 112 (100.0) 97 (87.2), 67 (1.1), 53 (1.0), 45 (0.7)

2-Ethylthiophene 112 (11.7) 97 (100.0), 69 (0.7), 67 (0.4), 53 (4.2),

 45 (1.1)

Benzene 78 (100.0) 77 (24.3), 76 (3.6), 63 (3.1), 52 (2.6),

 51 (2.6), 50 (3.4)

Toluene 92 (37.2) 91 (100.0), 66 (1.9), 65 (8.6), 63 (1.0)

o-Xylene 106 (56.8) 91 (100.0), 79 (1.1), 78 (1.4), 77 (1.6)

 65 (3.8)

m-Xylene 106 (46.7) 91 (100.0), 78 (1.4), 77 (1.4), 65 (2.9)

p-Xylene 106 (37.7) 91 (100.0), 79 (1.0), 78 (1.4). 77 (1.5)

 65 (3.0)

Ethylbenzene 106 (17.6) 91 (100.0), 78 (2.4), 65 (3.1)

t-Butylbenzene 134 (0.9) 119 (100.0), 91 (52.9), 65 (1.2)

Nitrobenzene 123 (7.0) 93 (42.1), 77 (100.0), 65 (33.0)

m-Nitrotoluene 137 (12.0) 107 (16.2), 91 (100.0), 79 (12.2),

 77 (8.8), 65 (9.4)

Ethylnitrobenzene 151 (12.0) 136 (2.7), 134 (8.5), 121 (20.4),

 106 (1.5), 105 (100.0), 103 (23.4),

 93 (21.3), 91 (14.7), 79 (9.2), 78 (4.6),

 77 (15.5)

1-Octanethiol 146 (100.0) 112 (78.8), 84 (10.8), 83 (19.3),

 82 (12.6), 70 (15.2)

1-Dodecanethiol 202 (87.9) 168 (100.0), 111 (12.4), 97 (27.9),

 96 (27.4), 83 (27.4), 82 (21.5), 70 (5.0)

Indole 117 (100.0) 91 (1.0), 90 (49.1), 89 (34.2), 63 (1.3)

2-Methylindole 131 (86.8) 130 (100.0), 116 (1.5), 104 (4.2),

 103 (8.0), 91 (1.8), 89 (1.5), 78 (2.8),

 77 (6.3)

2,3-Dimethylindole 145 (100.0) 144 (73.4), 130 (52.6), 128 (5.0),

 118 (3.1), 117 (2.4), 116 (2.6),

 115 (7.2), 103 (3.2), 91 (2.4), 89 (1.1),

 78 (1.3), 77 (5.2)

Pyridine 79 (100.0) 77 (23.6), 52 (22.7), 51 (2.6), 50 (2.2)

4-Methylpyridine 93 (100.0) 92 (24.3), 78 (3.6), 67 (18.1), 66 (30.6),

 65 (17.9), 64 (1.7), 53 (1.3), 40 (2.1)

2,4-Dimethylpyridine 107 (100.0) 92 (10.2), 80 (4.4), 79 (15.6), 78 (5.3),

 77 (5.3), 66 (2.2), 65 (3.4)

2,6-Dimethylpyridine 107 (100.0) 92 (10.8), 80 (2.2), 79 (8.3), 78 (2.3),

 77 (3.6), 66 (12.0), 65 (5.0)

Aniline 93 (100.0) 92 (4.8), 78 (1.9), 77 (1.1), 76 (0.2),

 67 (1.8), 66 (58.1), 65 (9.7), 54 (1.4)

o-Methylaniline 107 (100.0) 106 (94.1), 90 (1.0), 89 (2.5), 80 (2.8),

 79 (5.9), 78 (3.0), 77 (6.0)

m-Methylaniline 107 (87.8) 106 (100.0), 90 (1.5), 80 (2.9), 80 (3.2),

 79 (8.3), 78 (3.9), 77 (9.7)

2,4-Dimethylaniline 121 (100.0) 120 (62.1), 106 (91.7), 104 (1.9),

 103 (2.4), 94 (1.2), 93 (1.5), 92 (2.0),

 91 (2.5), 80 (1.1), 79 (5.0), 78 (2.8),

 77 (8.6)

2,6-Dimethylaniline 121 (100.0) 120 (35.1), 106 (69.7), 104 (1.6),

 103 (1.6), 94 (0.9), 93 (1.5), 92 (1.3),

 91 (1.8), 80 (1.1), 79 (4.1), 78 (2.7),

 77 (6.9)

142

The fragmentation results for the nitrobenzenes show that the

loss of 46 and 30 is characteristic of this class of compounds. These

correspond to the loss of NO2 and NO from the parent ion71. The loss

of 46 seems particularly well suited as a primary screening

characteristic, since in the CAD spectra of the pure compounds this

loss generates the most intense ion.

The alkylthiols, octanethiol and dodecanethiol, exhibit a strong

loss of 34, which corresponds to a loss of SH2. Since the thiol group

is the only unique feature in the alkyl chain, only one screening

reaction can be identified.

The indoles exhibit the loss of 27 and 54 as well as the

formation of a 91+ daughter ion. The loss of 27 and 54 correspond to

CHN and C4H6 respectively. Since the indole structure contains a

benzene ring the formation of the 91+ daughter ion is expected.

Unique identification of the presence of the pyridines and/or

anilines is made difficult because these two classes of compounds

have the same molecular formulas. The major structural difference

between the two compound classes is whether or not the nitrogen is

incorporated into the aromatic ring structure. Both the anilines and

the pyridines exhibit a neutral loss of 27 amu upon fragmentation.

The loss of 27 (CHN) can be used as a primary screening reaction to

locate nitrogen-containing aromatic species. The anilines undergo a

loss of NH3 as indicated by the loss of 17 from the parent ions. This

loss can be used to determine if any anilines are present at the

masses detected by the loss of 27. If any loss of 17 is observed,

143

anilines are present in the sample with pyridines possibly present.

If no loss of 17 is observed the presence of pyridines is indicated

by the loss of 27.

The indoles exhibit the loss of 27 and 54 as well as the

formation of a 91+ daughter ion. The loss of 27 and 54 correspond to

CHN and C4H6 respectively. Since the indole structure contains a

benzene ring the formation of the 91+ daughter ion is expected. The

loss of 27 can be used for screening for indoles in the presence of

pyridines and anilines since the mass series for the indoles does not

overlap the mass series of the pyridines and anilines.

Table 7.2 summarizes the screening reactions selected for the

compound classes studied. Three types of fuels were examined in this

study; Jet A a jet aviation fuel, a shale oil derived jet fuel, and

No. 2 Diesel fuel. Mass spectra of raw Jet A and diesel fuel are shown

in Figure 7.3. The complexity of the spectra illustrates the

impracticality of attempting to use parent masses alone to identify

trace components present in the fuels.

The general formula for the thiophenes is CnH2n-4S, forming a

homologous mass series of 84, 98, 112, 126, 140, etc. The results of

screening all three fuel type for substituted thiophenes are presented

in Figure 7.4. These spectra show the presence of thiophenes with 1

to 7 carbons in side chains. General trends can also be observed in

these results. In Jet A the thiophenes seem to be more highly

substituted than in the other fuels. In the shale oil spectrum the

thiophene distribution favors the low end of the mass range. Whereas

144

Table 7.2 Summary of Screening Reactions

 NEUTRAL LOSS COMPOUND CLASS

 -17 Anilines

 -27 Anilines, Pyridines, Indoles

 -30 Nitrobenzenes

 -34 Alkylthiols

 -45 Thiophenes

 -46 Nitrobenzenes

 -54 Indoles

 DAUGHTER ION COMPOUND CLASS

 65+ Alkylbenzenes

 91+ Alkylbenzenes

 97+ Thiophenes

145

Figure 7.3 Raw MS of Jet A, Shale Oil and Diesel fuel

146

Figure 7.4 Parents of 97+ for Jet A, Shale Oil, Diesel

147

in the case of the diesel the thiophene distribution seems to be

fairly even over the entire mass range.

Figure 7.5 presents the results of screening for the

alkylbenzenes that form the homologous mass series 92, 106, 120, 134,

148, etc. The presence of alkylbenzenes with up to 6 carbons in side

chains (mass 162) is indicated in Jet A and the shale oil sample where

the maximum is 5 carbons (mass 148) in the diesel fuel.

The results of screening for the presence of indoles by observing

the loss of 54 are show in Figure 7.6. In none of the fuel samples

was the presence of indole (117) indicated. The presence of at least

three indoles in Jet A is indicated by the peaks at masses 131, 145,

and 159. Two indole peaks appear in the spectra for shale oil (145,

159) and diesel fuel (131, 145).

Figure 7.7 compares the results of screening for the

nitrobenzenes in Jet A and diesel fuel. The Jet A appears to have two

nitrobenzene components at 123 and 137 amu. Diesel fuel has three

nitrobenzenes as indicated by the peaks at 123, 151, and 165 amu. No

nitrobenzenes were observed in the shale oil fuel. On the subject of

negative results, no alkylthiols were sucessfully detected in any of

the fuel samples.

Finally, Figure 7.8 presents the results of screening the shale

oil derived fuel for the pyridines and anilines. The spectrum of the

loss of 27 indicates the possible presence of pyridines or anilines

at masses 107, 121, 135, and 149. The only mass the spectrum of the

148

Figure 7.5 Parents of 91+ for Jet A, Shale Oil, Diesel

149

Figure 7.6 Loss of 54 from Jet A, Shale Oil, Diesel

150

Figure 7.7 Loss of 46 from Jet A, Diesel

151

Figure 7.8 Loss of 27 and 17 from Shale Oil

152

loss of 17 (used to screen for anilines) has in common with this list,

is 149. This suggests that there are at least the pyridines and one

aniline to be found in the sample.

These results demonstrate the ability of TQMS to detect selected

species in hydrocarbon fuels. Although no attempt was made to quantify

these results, the ability to readily detect single ring thiophenes

that are present in these types of fuels at below the 10 parts per

thousand range gives a rough indication of the sensitivity of the

technique. The use of internal standards such as isotopically labeled

species or standard addition experiments are effective approaches for

quantitation by TQMS when necessary. Another useful approach for

quantitation would be to use multiple reaction monitoring (MRM), the

TQMS analog of multiple ion monitoring in GC/MS, to monitor the ion

currents for the reactions of interest and then use the area of the

chromatographic peaks for quantitation as in GC/MS.

CONCLUSIONS

The separatory power of a TQMS instrument permits the detection

of trace components in fuels without prior sample work-up or

additional chromatographic techniques. Sample handling and analysis

time can be reduced to about 5 minutes because of the ability of TQMS

to analyze fuel samples directly. Since each scan takes only a few

seconds to complete, screening for many compound classes can be

accomplished in a very short time. The ability of a triple quadrupole

153

mass spectrometer to detect minor components in such complex mixtures

can make it a valuable tool in fuel stability studies.

ACKNOWLEDGMENTS

The authors would like to thank the National Aeronautics and

Space Administration for financial support of this project, and the

people at Extranuclear Inc. for their assistance and use of their

equipment.

154

REFERENCES

59 Dahlin. K.E.; Daniel, S.R.; Worstell, J.H. Fuel 1981, 60, 477-480

60 Tutubalina,V.P.; Gabdrakhmanov, F.G.; Korotkova, E.G. Deposited Doc.

1980, SPSTL 460Khp-D80

61 Hazlett, R.N.; Hall, J.M. Prepr. - Am. Chem. Soc., Div. Pet. Chem. 1981,

26(2), 613-619

62 Jones, L.; Hazlett, R.N.; Li, N.C.; Ge, J. Preprint Am. Chem. Soc. Fuels

Div. 1983, 28(1), 196

63 Yost, R.A., Enke, C.G., McGilvery, D.C., Morrision, J.D., Int. J. of Mass

Spectrom. Ion Phys, 30, 127 (1979)

64 Yost, R.A., Enke, C.G., American Lab, June 1981

65 Bol'shakov,G.F., Izv. Vyssh. Uchebn. Zaved., Neft Gaz 1976 19(5), 51-3

66 Chertkov, Y.B., Chem. Technol. Fuels Oils, (1976),154

67 Worstell, J.H., Daniel, S.R., Fuel, 1981, 60, 481-4

68 Wenzel, B., Aiken, R.L., J. Chrom. Sci., 1979, 17, 503-9

69 Myerholtz, C.A.; Enke, C.G. Am. Soc. Mass. Spec. 30th Conference

Honolulu, 1982

70 McLafferty, F.W. "Interpretation of Mass Spectra third edition"; Turro,

N.J. Ed.; University Science Books: Mill Valley,CA, 1980, p.187

71 Zakett, D., Hemberger, P.H., Cooks, R.G., Anal. Chim. Acta 119, 149

(1980)

155

Chapter 8 : COMMENTS AND SUGGESTIONS

156

Short terms goals in the instrumentation area could focus on

consolidating the gains made in our laboratory over the past several

years. A number of advanced capabilities such as low-cost graphics,

floating point coprocessor support, Winchester disk support,

distributed processing capability, and the softknobs, have been made

available for use in the laboratory. To date, only the TQMS control

system takes advantage of these capabilities. The low-cost hardware

that is available needs to be utilized to provide more graphics and

data reduction functions on control systems. The greater and more

immediate the feedback of experimental results to the operator the

more efficiently a series of experiments can be performed.

In the area of hardware development two projects might be

considered for future development. One is an interprocessor module

similar to the status module featuring a greater amount (1K) of dual-

port memory. This would be helpful since in a distributed system there

are a number of pieces of information that all the processors need to

know. A larger dual-port memory store would simplify the dissemination

of this type of information and reduce redundancy in the system. The

second project would be the development of a CPU module based on the

68008 microprocessor chip. The 68008 provides all of the features of

a 68000, except it utilizes only an 8-bit data bus instead of a 16-

bit data bus. This processor allows large memory spaces to be accessed

more easily than the 8088 processor currently being used. This would

allow less-expert programmers to develop larger applications which

could include more functions to aid the operator.

157

In order for triple quadrupole mass spectrometry to gain more

widespread acceptance and use as an analytic tool, more practical

applications need to be demonstrated in the literature. The fuel

analysis capabilities demonstrated in chapters 6 and 7 provide a

fertile ground for new applications. These types of applications are

of particular interest to the petroleum companies which are among the

largest users of mass spectrometry.

To continue to expand the applications of TQMS to fuel studies,

screening procedures for additional compound types need to be

investigated. Compound classes of interest include the pyrroles,

furans, benzofurans, quinolines, tetrahydroquinolines, tetralins

(tetrahydronapthalenes), and indans. Members of these compound

classes are illustrated in Figure 8.1. The furans, pyrroles and

quinolines are of particular interest since they have been shown to

contribute to deposit formation in jet fuels.

72

If these studies are undertaken, the screening reactions could

be used with GC/MS/MS to attempt to develop methods of quantifying

the species present and identifying specific isomers. The screening

and quantification methods could then be applied to fuel samples

before and after thermal stressing. The deposit formation results

obtained from experiments run on a jet fuel thermal oxidation tester

(JFTOT) can then be correlated with the detailed composition of the

fuel obtained by the TQMS techniques to identify the species and

mechanisms involved in deposit formation.

158

Figure 8.1 Compound Classes for Future Study

159

An area of potential application of TQMS to fuels not directly

related to stability studies is fuel contamination. Leakage between

storage areas, especially in naval vessels can cause relatively clean

fuels such as aviation fuels to be contaminated by dirtier fuels such

as diesel fuel and bunker oils. Studies of these dirtier fuels should

lead to the identification of species not found in jet fuels. These

species could then be screened for in the jet fuels to detect any

fuel contamination.

In the process of the author's work several interesting

fragmentation patterns were observed. Since the author's work already

covered several diverse topics no fragmentation studies were

undertaken. These observations will be stated briefly for whomever

might find them interesting to investigate. The first, the

fragmentation of benzenethiol produced the following ion intensities;

110 (100.0), 84 (4.4), 66 (6.7). The interesting fragmentation is the

loss of 26 (C2H2) from the parent to generate the 84+ daughter ion.

The expected loss of 33 (SH) or 34 (SH2) was not observed. The 84+

daughter ion is suggestive of a thiophene ring, indicating that the

benzene ring may have ruptured lost C2H2 and formed a thiophene ring.

The 84+ ion also formed in the source could be fragmented to see if

it is indeed a thiophene ring. If so, this leads to the question of

why formation of a thiophene ring is favored so strongly over losing

the SH group and leaving the highly stable benzene ring structure

intact.

160

The second area that might yield interesting information on

fragmentation mechanisms is the observation that the methyl and

dimethyl substituted pyridines form a 92+ daughter ion upon CAD. It

is possible that this ion may be a pyridine analog of the tropylium

ion so commonly found among the alklybenzenes.

Finally, a few closing comments, remember "No guts, No glory".

If you are unfortunate enough to have read this entire dissertation,

I would like to bestow a curse upon you "May you live in interesting

times". May the Force be with you.

Worstell, J.H., Daniel, S.R., Fuel, 1981, 60, 481-4.

161

APPENDIX A

162

ENKE TRIPLE QUADRUPOLE MASS SPECTROMETER

OPERATOR'S MANUAL

VERSION 1.0

September 13, 1983

Carl Myerholtz

163

Table of Contents

DEVICE PARAMETERS ... 167
PARAMETER STORAGE AND RETRIEVAL 167
PDIR - PARAMETER DIRECTORY 167
PGET - GET PARAMETERS ... 167
PSAVE - PARAMETER SAVE .. 167
TUNESAVE .. 168
ALLSAVE ... 168
IONIZATION MODE SELECTION 168
EI .. 168
+CI ... 168
-CI ... 168
USR ... 168
PARAMETER EDITOR .. 168
PED ... 168
.PED - DISPLAY PARAMETERS 169
STAT - PARAMETER STATUS ... 169
SETTING SINGLE PARAMETERS 169
SET ... 170
!START .. 170
!END .. 170
!STEP ... 170
SETTING QUAD DC/RF MODES .. 170
DC .. 170
RF .. 170
RRD - RF/RF/DC .. 170
DRR - DC/RF/RF .. 170
DRD - DC/RF/DC .. 170
MISC .. 170
MS1 - SET MASS QUAD 1 ... 170
MS3 - SET MASS QUAD 3 ... 171
LOSS - SET NEUTRAL LOSS ... 171
DEVINIT - INITIALIZE DEVICES 171

DATA FILE OPERATIONS .. 172
?DISK - CHECK DISK SPACE .. 172
EDIR - EXPERIMENT DIRECTORY 172
SELECT - SELECT EXPERIMENT 172
?EXPT - DISPLAY EXPERIMENT NAME 172
EXPT - ENTER A NEW EXPERIMENT 172
DELETE - DELETE AN EXPERIMENT 173
NOTES ... 173
?NOTES - DISPLAY NOTES .. 173
SS - SELECT SCAN .. 173
?SCAN - DISPLAY CURRENT SCAN 173
INITIALIZE .. 173

DATA ACQUISITION .. 174
ACQUISITION PARAMETERS .. 174
RATE .. 174

164

PEAK FINDING PARAMETERS. .. 174
ASET - SET ACQUISITION PARAMETERS 175
.ASET - DISPLAY ACQUISITION PARAMETERS 175
!THRESHOLD .. 175
!PWIDTH ... 175
!MWIDTH ... 175
MASS SCANNING ... 175
1SCAN - QUAD ONE SCAN ... 176
3SCAN - QUAD THREE SCAN ... 176
PSCAN - PARENT SCAN ... 176
DSCAN - DAUGHTER SCAN ... 176
NSCAN - NEUTRAL LOSS SCAN 176
1SCANS .. 176
3SCANS .. 176
PSCANS .. 177
DSCANS .. 177
NSCANS .. 177
PARAMETER SCANNING .. 177
SWEEP ... 177

OSCILLOSCOPE DISPLAY FUNCTIONS 178
SCOPE - OSCILLOSCOPE GAIN CONTROL 178
FAST SCANNING FUNCTIONS ... 178
FSTOP - STOP OSCILLOSCOPE DISPLAY 178
FSPEED .. 178
F1SCAN .. 178
F3SCAN .. 179
FPSCAN .. 179
FDSCAN .. 179
FNSCAN .. 179
SPLIT SCREEN OPERATIONS ... 179
SPLITS - SPLIT SCREEN SETUP 179
.SPLITS - PRINT SPLIT SETTINGS 181
SSAVE - SPLITS SAVE ... 181
SGET - SPLITS GET ... 181
1SPLIT .. 181
3SPLIT .. 181
PSPLIT .. 181
DSPLIT .. 181
NSPLIT .. 182
XSCANS .. 182
X1SCAN .. 182
X3SCAN .. 182
XPSCAN .. 182
XDSCAN .. 182
XNSCAN .. 182

SOFT KNOBS .. 184
KNOBS - ACTIVATE SOFTKNOBS 184
KSET - DEFINE A KNOB SET .. 184
.KNOBS - DISPLAY KNOBS DEFINITIONS 184
KSAVE ... 184

165

KGET .. 184

DISPLAY FUNCTIONS ... 185
DLIST - DATA LIST ... 185
LIN - LINEAR DISPLAY .. 185
LOG - LOGRITHMIC DISPLAY .. 185
DISP - DISPLAY .. 185
DSET - SET DISPLAY PARAMETERS 185
.DSET - DISPLAY DISPLAY PARAMETERS 186
OPLOT - OVER PLOT ... 186
DTIC - DISPLAY TIC .. 186

DATA MANIPULATION ... 187
ADD ... 187
SUM ... 187
SUB ... 187

METHODS AND SEQUENCES ... 188
METHODS ... 188
MED - METHOD EDITOR ... 188
MLIST - METHOD LIST ... 189
MCOPY - METHOD COPY ... 189
MDIR - METHOD DIRECTORY ... 189
METHOD .. 189
SEQUENCES ... 189
SED - SEQUENCE EDITOR ... 190
SLIST - SEQUENCE LIST ... 190
SEQUENCE .. 190

MULTIPLE REACTION MONITORING 191

MASS CALIBRATION .. 192
CALIBRATION MASSES .. 192
CGET .. 192
CSAVE ... 192
.CAL - DISPLAY CALIBRATION MASSES 192
CALSET .. 192
INTERPOLATION TABLE OPERATIONS 192
LINCAL .. 192
.ITABLE - DISPLAY INTERPOLATION TABLE 193
ISAVE ... 193
IGET .. 193
CALIBRATE ... 193

FLOPPY DISK OPERATIONS .. 194
}SPLITS ... 194
}KNOBS .. 194
{KNOBS .. 194
}ITABLE ... 194
{ITABLE ... 195
}PARAM .. 195
{PARAM .. 195
}PARAMS ... 195

166

{PARAMS ... 195
}METHOD ... 195
{METHOD ... 195
}METHODS .. 195
{METHODS .. 195

MISC .. 196
HELP .. 196
TRANSMISSION .. 196
PTATRANS .. 196

167

DEVICE PARAMETERS

The computer has control over a great number of the devices that

affect instrument performance. There are a variety of methods

available to the user to set up these parameters, but first a

discussion of their organization is in order. The user may configure

up to sixteen sets of parameters at one time. These sets of parameters

are stored on the disk and can be identified with a 64-character

title. Only one parameter set can be active at a time. This is

accomplished by loading a selected set into memory. In addition, each

set of parameters is divided into four sections referred to as modes.

These mode sections contain complete sets of values for all device

for different ionization modes. These are identified as EI, +CI, -CI,

and USR corresponding to electron impact, positive chemical

ionization, negative chemical ionization, and a spare user ionization

mode. Thus, in a given parameter set, values can be set for all

devices for each different ionization mode available. Once a parameter

set is in memory it is possible to switch between the device settings

for the different ionization modes very rapidly without having to

access the disk again. Each device in the system has four parameters

associated with it. These are referred to as the CURRENT, START, END,

and STEP values. The CURRENT value is the value to which the device

is presently set to and to which it is returned to if the device is

scanned. The remaining values control the device when it is scanned.

The STEP value is the step size the value of a device is incremented

as it is scanned from the START value to the END value.

PARAMETER STORAGE AND RETRIEVAL

As mentioned above up to sixteen sets of parameters can be stored on

disk, they are numbered 0 to 15. Before a set can become active it

must be loaded into memory. This section deals with moving parameter

sets between disk and memory.

PDIR - PARAMETER DIRECTORY

This command displays a list of the titles assigned to the 16 parameter

sets.

PGET - GET PARAMETERS

n PGET - Moves parameter set n into memory overwriting the set that

is in memory. All the devices are updated to the new values.

PSAVE - PARAMETER SAVE

n PSAVE - Stores the current parameter settings residing in memory

into parameter set n on the disk. None of the device settings are

affected.

168

TUNESAVE

 n TUNESAVE - copies the CURRENT value of the device settings for the

currently selected ionization mode into the same ionization mode of

parameter set n on the disk.

ALLSAVE

Copies the CURRENT value of the device settings for the currently

selected ionization mode into the settings for the same ionization

mode of all the parameter sets on the disk.

IONIZATION MODE SELECTION

Whenever a new ionization mode is selected out of the parameter set

currently in memory all device values are updated and the source and

detection electronic are put in the proper mode if they are under

computer control.

EI

Selects the electron impact ionization mode.

+CI

Selects the positive chemical ionization mode.

-CI

Selects the negative chemical ionization mode.

USR

Selects the user ionization mode. Currently this turns all filaments

off.

PARAMETER EDITOR

The parameter editor allows the user to modify any of the device

parameters of the parameter set in memory using a screen oriented

editor. The changes go into effect as soon as the editor is exited.

The changes do not affect the setting of the parameter set on the

disk unless the appropriate PSAVE command is issued.

PED

PED - activates the parameter editor. The editor displays the

parameter set number and title of the active parameter set transferred

into memory with the PGET command, the ionization mode selection when

the editor was invoked, and the values of all the device parameters.

Note that PED always returns to the ionization mode that was in effect

when it was invoked. A cursor, which is highlighted in reverse video,

will be placed at the first entry in the parameter set. The arrow

169

keys on the terminal are used to move the cursor to the parameter

value to be modified. A return entered alone will cause the cursor to

move the CURRENT value entry of the next device in the list. To change

the value on which the cursor is positioned, type in the new value

followed by a return. In addition to the arrow keys the parameter

editor responds to several single character commands as follows:

 M - TOGGLE MODE

This command toggles the parameter editor between the values for the

different ionization modes. Each time M is entered it toggles the

editor to the next ionization mode in a circular list that follows

the order EI, +CI, -CI, USER, EI, etc.

T - ENTER TITLE

This command erases the current title associated with the parameter

set and moves the cursor to the title line to allow a new title to be

entered. A new title may be up to 64 characters in length with spaces

allowed and is terminated with a return.

C - COPY

Copies the values at the current position into a single entry buffer.

I - INSERT

Inserts the value in the buffer into the value at the current cursor

position.

R - REPAINT

Redisplays the entire screen.

Q - QUIT

Exit from the parameter editor.

.PED - DISPLAY PARAMETERS

Displays all of the parameter settings for the current ionization

mode without entering the parameter editor. Often used in conjunction

with the PRINT command.

STAT - PARAMETER STATUS

Equivalent to .PED.

SETTING SINGLE PARAMETERS

The following four commands all the user to set one of the parameters

for a device without entering the parameter editor. To work properly

the device whose value is to be modified must first be selected by

170

entering it two or three letter mnemonic name. For example, to change

lens three to 12.3 volts one would enter "L3 12.3 SET" or "12.3 L3

SET". Note that the device name may be entered before or after the

numeric value. The only requirement is that it appears before the

command word.

SET

n SET - sets the current value of the selected device to n.

!START

n !START - sets the start value of the selected device to n.

!END

n !END - sets the end value of the selected device to n.

!STEP

n !STEP - sets the step value of the selected device to n.

SETTING QUAD DC/RF MODES

DC

n DC - sets quad n in the DC mode.

RF

n RF - sets quad n in the RF-only mode.

RRD - RF/RF/DC

Places quads 1 and 2 in the RF-only mode and quad 3 in the DC/RF mode.

DRR - DC/RF/RF

Places quad 1 in the DC/RF mode and quads 2 and 3 in the RF-only mode.

DRD - DC/RF/DC

Places quads 1 and 3 in the DC/RF mode and quad 2 in the RF-only mode.

MISC

MS1 - SET MASS QUAD 1

n MS1 - sets the mass selected by quad one to n. Equivalent to "n M1

SET".

171

MS3 - SET MASS QUAD 3

n MS3 - sets the mass selected by quad three to n. Equivalent to "n

M3 SET".

LOSS - SET NEUTRAL LOSS

n LOSS - sets up for a neutral loss of n. Start mass for quad three

is set equal to (start mass quad one) - n.

DEVINIT - INITIALIZE DEVICES

Sets all devices to their current value in the parameter table. This

is automatically done after each PGET.

172

DATA FILE OPERATIONS

The software system maintains a large file (4,192,000 bytes) on the

Winchester disk for data storage. This file is divided into 65500

records, each 64 bytes long. All the data acquired by the system is

stored in this file. A distinction is made between two types of data

in the file. These are SCANS and EXPERIMENTS. A SCAN is a set of data

collected with one of the commands discussed in the next chapter.

Each time a data SCAN is acquired it is written into the data file.

An EXPERIMENT is a set of sequentially acquired scans, hopefully, but

not necessarily related. Since a great number of scans may be written

on the disk EXPERIMENT records can be written to group scans together.

Each EXPERIMENT has a name up to 16 characters in length (spaces may

be included). After data has been acquired, data can be retrieved

from any experiment. However new data is always stored only in the

last experiment on the disk. The various commands used to examine,

select, and enter EXPERIMENT information in the data file are

discussed below.

?DISK - CHECK DISK SPACE

Displays the number of records currently in use in the data file and

the number of records still free.

EDIR - EXPERIMENT DIRECTORY

Experiment Directory - Lists all of the experiments in the data file

along with the time and date they were created, the number of scans,

and the total number of records used in the experiment. When displayed

on the terminal EDIR will pause each time the screen is full. Strike

the space bar to continue the experiment directory or the return key

to leave the directory.

SELECT - SELECT EXPERIMENT

 SELECT "experiment name" - Selects an existing experiment as the

experiment from which to retrieve data. No matter which experiment is

selected new data will always be added to the last experiment on the

disk.

?EXPT - DISPLAY EXPERIMENT NAME

Displays the name and header information for the currently selected

experiment.

EXPT - ENTER A NEW EXPERIMENT

EXPT "name" - defines a new experiment called "name" on the disk. The

name of an experiment may be up to 16 characters and may contain any

character except "\". All data acquired subsequently to the EXPT

command will be entered into this new experiment. The new experiment

173

will also be made the current experiment for any of the display

commands.

DELETE - DELETE AN EXPERIMENT

DELETE "experiment name" - deletes all the data in the specified

experiment from the disk.

NOTES

Along with other information in the header for an experiment is space

or the user to enter four 64-character lines of notes about the

experiment, his or hers love life etc. Notes may be entered into the

experiment selected as the current experiment at any time. Thus, notes

may be entered at the start, or end of an experiment or days later

when you think up an excuse for the poor results. Each note line is

entered by a separate command, and can be written over by repeating

the command. The form of the note commands is as follows.

 1NOTE This is the text for note one.

 2NOTE This is the text for note two.

 3NOTE This is the text for note three.

 4NOTE This is the text for note four.

?NOTES - DISPLAY NOTES

?NOTES displays all of the notes for the current experiment.

SDIR - SCAN DIRECTORY

Scan Directory - lists the header information for all of the scans in

the current experiment. This header information includes the scan

type, range of the scan, mass settings of quads 1 and 3, ionization

mode, number of data points acquired and the Total Ion Current

measured in the scan. When a Scan Directory is displayed on the

terminal it will pause each time the screen is full. Strike the space

bar to continue, or a return to leave the directory.

SS - SELECT SCAN

n SS - Selects Scan n of the current experiment as the current scan

for display and reporting purposes.

?SCAN - DISPLAY CURRENT SCAN

?SCAN - Displays the header information for the currently selected

scan.

INITIALIZE

INITIALIZE - removes all data files from the winchester disk.

174

DATA ACQUISITION

Data acquisition operations can be broken down into two basic types.

Those that perform peak finding while scanning a parameter and those

that do not. All data acquisition operations automatically write the

data to the disk when the operation is complete. The number of data

points that a single scan can obtain is limited to 1024. The ion

current measured by the system is expressed as a number between 0 and

1,048,575, giving the data acquisition system a dynamic range of six

orders of magnitude.

ACQUISITION PARAMETERS

RATE

n RATE - sets the rate at which the scan is performed, where n

specifies one of the scanning rates given in the table below.

 RATE POINTS/SEC TIME/POINT AMU/SEC (0.1 amu steps)

 0 10,000 100 usec 1,000

 1 5,000 200 500

 2 2,500 400 250

 3 1,000 1 msec 100

 4 500 2 50

 5 250 4 25

 6 100 10 10

 7 50 20 5

 8 25 40 2.5

 9 10 100 1

 10 5 200 0.5

 11 2.5 400 0.25

 12 1 1 sec 0.10

 13 0.5 2 0.05

 14 0.25 4 0.025

As the scanning rate is decreased the number of times the ion current

is sampled before an average value is obtained for a given data point

is increased. Thus, as the scanning rate is lessened the signal to

noise ratio of the data improves. This rate parameter controls the

scanning rate of all data acquisition, those that perform peak finding

and those that do not.

PEAK FINDING PARAMETERS.

There are three parameters that control the performance of the peak

finding algorithm. These are threshold, minimum width, and maximum

width. Currently there are no provisions for saving and recalling

175

these parameters from the disk. The user is advised to check these

parameters before performing any data acquisition functions.

THRESHOLD

The threshold is the value which the ion current must become greater

than before a peak can be recognized. It may have any value in the

range of 0 to 65535.

MINIMUM WIDTH

This parameter defines the minimum acceptable peak width in terms of

step size. That is if it is set to two and the step size is 0.1 amu

than the minimum acceptable peak width is 0.2 amu. The main function

of this parameter is to filter out narrow noise spikes.

MAXIMUM WIDTH

This parameter the maximum width of the peak in terms of step size.

If the ion current has not returned to below threshold by this point

the peak is terminated and the software beings searching for the

isotope peak. To indicate that a peak exceeded the maximum width value

and was abnormally terminated the flags value for that peak is set to

one.

ASET - SET ACQUISITION PARAMETERS

ASET first displays a table of rate setting similar to the one given

earlier. ASET then displays the values all four acquisition

parameters. ASET will then display a ? next to each parameter in

sequence. To change a parameter type in a new value, to leave it

unchanged just strike return.

.ASET - DISPLAY ACQUISITION PARAMETERS

Displays the same information as ASET without asking the user to

change any of the values.

!THRESHOLD

n !THRESHOLD - set the threshold parameter to n.

!PWIDTH

n !PWDITH - set the minimum peak width parameter to n.

!MWIDTH

n !MWIDTH - set the maximum peak width parameter to n.

MASS SCANNING

176

The control system allows the user to scan the mass filters of the

TQMS in five different ways: mass scan of quad one, mass scan of quad

three, parent, daughter, and neutral loss scans. These modes are

abbreviated as 1, 3, P, D, and N respectively.

1SCAN - QUAD ONE SCAN

Sets the instrument into the DC/RF/RF configuration and then scans

quad one from its START to END values while performing peak finding.

3SCAN - QUAD THREE SCAN

Sets the instrument into the RF/RF/DC configuration and then scans

quad three form it's START to END values while performing peak

finding.

PSCAN - PARENT SCAN

Sets the instrument into the DC/RF/DC configuration. Sets quad three

to its CURRENT value and scans quad one from its START to END values

while performing peak finding.

DSCAN - DAUGHTER SCAN

Sets the instrument into the DC/RF/DC configuration. Sets quad one to

it's CURRENT value and scans quad three from its START to END values

while performing peak finding.

NSCAN - NEUTRAL LOSS SCAN

Sets the instrument into the DC/RF/DC configuration. It then scans

quads one and three together. Both start at their respective START

values and the scan proceeds with peak finding until quad one reaches

its END value. The step size is controlled by the STEP value for quad

one.

1SCANS

n 1SCANS - performs 1SCAN n times. n must be in the range 0-32767.

This causes n quad one scans to be sequentially acquired and recorded

on the disk.

3SCANS

n 3SCANS - performs 3SCAN n times. n must be in the range 0-32767.

This causes n quad three scans to be sequentially acquired and

recorded on the disk.

177

PSCANS

n PSCANS - performs PSCAN n times. n must be in the range 0-32767.

This causes n parent scans to be sequentially acquired and recorded

on the disk.

DSCANS

n DSCANS - performs DSCAN n times. n must be in the range 0-32767.

This causes n daughter scans to be sequentially acquired and recorded

on the disk.

NSCANS

n NSCANS - performs NSCAN n times. n must be in the range 0-32767.

This causes n neutral loss scans to be sequentially acquired and

recorded on the disk.

PARAMETER SCANNING

The computer system can perform a type of data acquisition scan called

a SWEEP for any device under its control. In a sweep a data point is

recorded each time the current value of the selected device is

incremented by its step size. The total number of data points taken

is given by (END -START)/STEP and must not exceed 1024.

SWEEP

device SWEEP - scans the specified "device" from its START value to

its END value recording the ion current each time the value of the

device is incremented by STEP.

178

OSCILLOSCOPE DISPLAY FUNCTIONS

The mass spectrometer system includes a display oscilloscope that

enables the user to view the output of the detector preamplifier in

real time. The X axis of the oscilloscope is driven by the computer

and normally represents a mass axis. The computer can be used to

select one of five gain factors to apply to the output of the

preamplifier before displaying the ion current on the oscilloscope.

The principle use of the oscilloscope is to give the user an immediate

visual feedback when tuning up the instrument.

SCOPE - OSCILLOSCOPE GAIN CONTROL

n SCOPE - selects one on the five gains to apply to the ion current

from the table below.

 n GAIN FACTOR

 0 256

 1 64

 2 16

 3 4

 4 1

FAST SCANNING FUNCTIONS

Fast scanning functions perform scanning operations for display on

the oscilloscope. No data acquisition or storage is performed. Fast

scanning functions operated as a background task, that is once started

they continue to display data on the oscilloscope until specifically

turned off or another fast scanning function is started. The terminal

will remain active while a fast scanning function is in operation.

The fast scanning operations use the same START, END and STEP values

that are used when scanning with data acquisition.

FSTOP - STOP OSCILLOSCOPE DISPLAY

Halts any display on the oscilloscope screen.

FSPEED

n FSPEED - controls the scanning speed of all oscilloscope display

functions. n is an arbitrary value between 1 and 32767. The larger

the value of n the slower the scanning speed.

F1SCAN

Performs a quad one scan repeatedly for oscilloscope display.

179

F3SCAN

Performs a quad three scan repeatedly for oscilloscope display.

FPSCAN

Performs a parent scan repeatedly for oscilloscope display.

FDSCAN

Performs a daughter scan repeatedly for oscilloscope display.

FNSCAN

Performs a neutral loss scan repeatedly for oscilloscope display.

SPLIT SCREEN OPERATIONS

Split screen functions allow the user to display up to five peaks

side by side on the display oscilloscope. Split screen displays are

a background task like the fast scanning functions and once started

continue to display on the oscilloscope while the terminal remains

active. There are five basic split screen operations corresponding to

the five standard mass scanning modes (quad1, quad3, parent, daughter,

and neutral loss). The user may assign between one and five masses to

each split screen mode. In addition, the scope gain function to be

used when displaying a given mass may also be specified. When

activated the system will display a five amu region centered around

each specified mass using the specified gain factor. Note that when

a parent, daughter, or neutral loss split is activated the appropriate

values for parent ions and neutral losses are extracted from the

currently active parameter set as describe in the mass scanning

section earlier. To set up all of these parameters an interactive

routine called SPLITS is used.

SPLITS - SPLIT SCREEN SETUP

SPLITS activates a split screen setup editor. It displays the center

mass and gain function for the five display window for each of the

five scanning modes along with a brief menu of commands. In addition,

a sixth set of parameters is display for a TUNE mode that will be

explained later. A reverse video cursor will appear at the first enter

for the quad 1 scan mode. This cursor can be moved to the different

mass windows displayed on the screen using the arrow keys. To change

the mass window selected by the cursor, enter the new value followed

by a return. When a split screen display is activated it starts by

displaying mass window 1, then mass window 2 and so on until it

encounters a mass window whose value is set to zero. Thus, by setting

mass window 4 to zero for quad 1 scanning mode only the first three

mass windows will be displayed. In addition to the arrow keys SPLITS

recognizes ten single character commands.

180

Z - ENTER ZERO

Enter a zero for the mass window selected by the current cursor

position.

G - GO

Activate the split screen display for the scan mode specified by the

line the cursor currently is located on. When a scan mode is being

actively displayed on the scope an asterisk is displayed next to the

mode name to indicate which mode is active.

A - AMPLIFICATION TOGGLE

Toggle the gain factor for the mass window currently selected by the

cursor. Each time A is pressed the gain will be advanced one through

the sequence 256, 64, 16, 4, 1.

< - SHIFT LEFT

Increments the value in the mass window currently selected by the

cursor 0.2 amu causing the peak to shift to the left on the display.

This command will start the split screen display running if a Go

command hasn't already been issued.

> - SHIFT RIGHT

Same as the shift left command above except that it decrements by 0.2

amu causing the peak to move to the right.

P - PARENT

Allows the user to specify a new parent ion to be used for the daughter

scan display.

D -DAUGHTER

Allows the user to specify a new daughter ion to be used for the

parent scan display.

M - IONIZATION MODE TOGGLE

The ionization mode currently in effect is displayed at the upper

righthand corner of the split screen display. This command toggles

the system to the next ionization mode in the circular list EI, +CI,

-CI, USR. The selected ionization mode remains in effect after exiting

SPLITS.

T - SELECT TUNE VALUES

There is a sixth set of mass windows labeled TUNE. When a T is entered

a split screen display is started for the scan mode specified by the

line the cursor is currently on. However instead of using the mass

windows specified for that mode the mass windows specified on the

tune line are used. An asterisk is then displayed next to the active

181

scan mode and the on the TUNE line to indicate which scan mode is

active and that it is using the TUNE parameters. The primary use of

this function is to keep a set of mass windows in the TUNE set for a

standard reference compound, thus making it easy for the user to

quickly check on known reference peaks.

Q - QUIT

Exits from the SPLITS command.

The SPLITS command is very powerful and somewhat complex. The easiest

way to understand its operation is to experiment with it for a while

using a familiar reference compound.

.SPLITS - PRINT SPLIT SETTINGS

Generates the same display as SPLITS without entering the interactive

mode.

SSAVE - SPLITS SAVE

Copy the currently active splits settings into a reserved storage

area on the disk.

SGET - SPLITS GET

Copy the splits setting from the disk area into memory making them

active. Most often used to recall a set of default settings from the

disk.

1SPLIT

Activate a quad 1 split screen display using the parameters setup

with the SPLITS command.

3SPLIT

Activate a quad 3 split screen display using the parameters setup

with the SPLITS command.

PSPLIT

Activate a parent split screen display using the parameters setup

with the SPLITS command.

DSPLIT

Activate a daughter split screen display using the parameters setup

with the SPLITS command.

182

NSPLIT

Activate a neutral loss split screen display using the parameters

setup with the SPLITS command.

XSCANS

As an additional tuning aid there is a special class of fast scanning

operations called XSCANS. They operate similarly to FSCANS. However

instead of utilizing the STEP value specified in the parameter table

the mass scanning DACs are incremented by one. These scans operated

3 to 5 times slower than fast scans and are primarily intended to be

used to examine small mass ranges in great detail.

X1SCAN

Performs a quad one xscan repeatedly for oscilloscope display.

X3SCAN

Performs a quad three xscan repeatedly for oscilloscope display.

XPSCAN

Performs a parent xscan repeatedly for oscilloscope display.

XDSCAN

Performs a daughter xscan repeatedly for oscilloscope display.

XNSCAN

Performs a neutral loss xscan repeatedly for oscilloscope display.

183

184

SOFT KNOBS

In order to place the numerous computer controlled devices under a

more convenient form of control for the user a set of four knobs have

been supplied. These four knobs may be connected by the computer to

any device in the system.

KNOBS - ACTIVATE SOFTKNOBS

This command activates the softknobs. It displays ten sets of knob

definitions, that is which knob is assigned to which device. These

knob definitions are numbered 0 - 9. To select a knob definition enter

its number. The device assignments and values for each knob will then

be updated to reflect the new definition. The values of the devices

the knobs control are continuously updated on the terminal display.

To exit from the knobs display enter a Q. Note that the softknobs

will have no effect on the system unless the KNOBS command is active.

KSET - DEFINE A KNOB SET

m KSET dev1 dev2 dev3 dev4 - defines a new set of devices for knobs

definition n. Dev1 is assigned to knob one, dev2 is assigned to knob

two and so on. The names of four device must always be entered. If a

knob is to be inactive in a definition assign it to the NUL device.

Example: 3 KSET Q1 Q2 Q3NUL causes knobs definition three to assign

Q1, Q2 ,Q3 to knobs one, two, and three respectively. Knob four is

assigned to the NUL device and is thus inactive.

.KNOBS - DISPLAY KNOBS DEFINITIONS

.KNOBS - displays the knob definitions without activating the knobs.

KSAVE

Saves the current set of knobs definitions so that they can be

recovered if changes are made.

KGET

Recovers the previously saved set of knob definitions.

185

DISPLAY FUNCTIONS

All display functions use the last scan acquired or the scan selected

as the current scan by the SS command from the current experiment

specified by the SELECT command. The data in a scan can be displayed

in two forms: numeric or graphic. The DLIST command generates a

numeric display. The DISP command generates a graphical display. In

the graphical displays, the data is normalized. That is the top edge

of display is equivalent to the largest point in the data set. The

raw value of the point is always displayed at the top righthand edge

of the plot. The intensity axis of the plot may be on either a linear

or a logarithmic scale.

DLIST - DATA LIST

Displays the x value (mass or voltage), raw intensity, normalized

intensity, and flag values for each data point in the scan. A flag

setting of 1 indicates the mass peak width was greater than the

maximum limit in effect at the time of acquisition. DLIST will pause

each time the terminal screen becomes full. Strike the space bar to

continue the display or hit return to exit from DLIST.

LIN - LINEAR DISPLAY

Selects a linear intensity scale for graphical displays. This is

indicated on a plot by tic marks on the y axis at 25%, 50%, 75%, and

100%.

LOG - LOGRITHMIC DISPLAY

Selects a logarithmic intensity scale for graphical displays. This

scale covers three orders of magnitude indicated by the tic marks at

3.000, 2.000, 1.000.

DISP - DISPLAY

Generates a graphical display of the data in the scan. For voltage

sweeps, a single box will be displayed, and the data will be plotted

as a continuous curve. For a mass spectrum the x axis will be divided

up into segments no more than 200 amu long (maximum of 5). The data

will then be plotted as a histogram. The user can over-ride the

automatic formatting of mass spectral data using the commands

described below.

DSET - SET DISPLAY PARAMETERS

There are three parameters that control the format mass spectral

information is displayed. Start mass - is the first mass at which to

start displaying the spectrum. Amu/field - is the number of amu to

186

display in each box plotted on the screen. #Fields - is the number of

boxes into which the mass spectrum is divided. Each one of these

values has a status associated with it. Either Auto or Preset. In the

Auto mode the computer selects the most optimal value for the

parameter. In the Preset mode the user specifies the values the

computer is to use. DSET will display the settings of all of the

parameters then ask the user if he want to change each one by

displaying a ? next to the value. A response of -1 sets a parameter

into the auto mode, a return leaves the parameter unchanged, and

entering a new value sets the parameter to that value. Remember that

the first two values are in terms of mass and must be entered including

the tenths place. i.e 30.0 not 30 for a 30 amu setting.

.DSET - DISPLAY DISPLAY PARAMETERS

Displays the settings of the display parameters.

OPLOT - OVER PLOT

Displays the current scan in graphical form without erasing the

display or plotting axis. This command is useful for comparing data

by causing one scan to be displayed on top of another. Note that all

data displayed with OPLOT is normalized to the maximum value of the

first data set plotted.

DTIC - DISPLAY TIC

n1 n2 DTIC - plots the total ion current (TIC) for scans n1 thru n2.

Only the TIC for scans of the same type as scan n1 will be plotted.

187

DATA MANIPULATION

ADD

n1 n2 ADD - add scans n1 and n2 together and create a new scan. All

masses will be rounded to the nearest nominal mass. The new scan will

be appended to the end of the last experiment.

SUM

n1 n2 SUM - sums all scans between n1 and n2 of the same type as scan

n1. All masses are rounded to the nearest nominal mass. A new scan is

created and added to the end of the last experiment.

SUB

n1 n2 SUB - subtract scan n2 from scan n1. All masses are rounded to

the nearest nominal mass. The new scan of the difference between n1

and n2 is added to the end of the last experiment. Any negative peak

intensities are set to zero.

188

METHODS AND SEQUENCES

METHODS

A METHOD is a series of instructions that are stored on the disk and

can be executed with a single command. A method consists of 16 lines

of text up to 64 characters in length. Up to 50 methods may be defined,

numbered 0-49. Methods can be nested, that is one method can initiate

the execution of another method. However, under no circumstances

should a method try to execute itself. Death and destruction will

surely follow. Any command that can be entered from the terminal can

be used in a method. However, any text strings such as experiment

names must be terminated with the \ character. Comments may also be

included in a method. Comments are used only for reference and

identification purposes and do not affect the execution of a method.

Comments enclosed in { } are printed out each time the method is

executed and comments enclosed in () are ignored. When used the ()

and { } must be separated from any text by at least one space. A

useful command when printing text from a method is CR which causes

the terminal to start printing on a new line. There are three command

used to create, display, and execute methods all of which must be

proceeded by a method number. These are MED, MLIST, and METHOD.

MED - METHOD EDITOR

n MED - Selects method n and activates the method editor. The editor

displays the contents of the method with the method number at the top

of the screen. The contents of the method can be changed with a series

of editor commands. These commands are entered and scroll by on only

the four lower lines of the terminal screen. The contents of the

methods are always displayed on the upper portion of the screen. Any

changes will appear in the method listing immediately. Most of the

editor commands are single letters, all of the commands are terminated

with a return.

METHOD EDITOR COMMANDS

n T - Select line n as the current line.

P text - Put text on current line, replacing any existing text.

U text - Put text on line Under the current line moving all other

lines down. The last line is lost.

X - Delete the current line moving all remaining lines up.

F text - Find the first occurrence of text starting from the current

cursor position. Can be repeated by just typing F.

E - Erases the last text string found with the F command.

189

R text - Replace the last string found with the F command with text.

D text - Delete the next occurrence of text.

I text - Insert text at the current cursor position. Any text pushed

off the end of a line is lost.

TILL text - Deletes all text on a line from the current cursor position

through and including the string text.

WIPE - Erase all the text in the method.

Q - Quit. Exit the method editor.

MLIST - METHOD LIST

n MLIST - displays the text for method n.

MCOPY - METHOD COPY

n1 n2 MCOPY - copies method n1 into method n2.

MDIR - METHOD DIRECTORY

MDIR - displays the first line of all 50 methods. It is considered

good form to make the first line of a method non-printing comment to

identify the function of the method. When MDIR is displayed on the

terminal it will pause each time the screen is full. Strike the space

bar to continue the method directory or a return to abort the

directory.

METHOD

 n METHOD - Causes method n to be executed.

SEQUENCES

A sequence is a series of methods each of which is repeated for

specified number of seconds before proceeding to the next method. The

primary application of sequences is GC/MS experiments. Up to 16

sequences can be defined at one time, numbered 0-15. A sequence can

contain up 16 methods. Each method can be executed from 1 to 65535

seconds. Sequences can be nested, that is for example sequence A may

contain a method that causes the execution of sequence B. One should

use caution when nesting sequences and methods that a recursive system

is not developed. A recursive system is one that ends up executing

190

itself over and over again until world war three or the computer

system crashes. If less than 16 methods are to be executed in a

sequence the duration of the method following the last method to be

executed must be set to zero.

SED - SEQUENCE EDITOR

n SED -Display sequence n and activates the sequence editor. Use the

arrow keys to move the cursor to the method number or duration you

wish to change. Enter the new value followed by a return. Enter a Q

to exit the editor.

SLIST - SEQUENCE LIST

n SLIST - Displays the method numbers and durations for sequence n.

SEQUENCE

n SEQUENCE - Causes sequence n to be executed. Execution of a sequence

can be terminated after the completion of a method by entering a Q.

The current method be finished before the Q takes effect.

191

MULTIPLE REACTION MONITORING

192

MASS CALIBRATION

Quads one and three each have an interpolation table used to convert

mass values (amu) to the digital-to-analog (DAC) values which are

used to control the quadrupole power supplies. These tables contain

up to sixteen masses and their corresponding DAC values. The control

system uses these entries and a linear interpolation algorithm to

make mass assignments. To set up these interpolation tables the user

must enter a list of calibrations masses to be used and then perform

the calibration function while a reference compound is in the mass

spectrometer.

CALIBRATION MASSES

The user may store five sets of calibration masses on the disk. The

calibration masses are not entered into either interpolation table

until the CALIBRATE functions is performed.

CGET

n CGET - Make calibration mass set n active by loading it from disk

into memory.

CSAVE

n CSAVE - Store the active calibration masses into set n on the disk.

.CAL - DISPLAY CALIBRATION MASSES

.CAL - displays the active calibration masses.

CALSET

CALSET - Allows the user to enter a new list of calibration masses.

This new list becomes the active set of calibration masses. Each time

a "?" is displayed a new calibration mass can be entered. To enter

less than 16 masses enter a 0 after the last desired mass. When the

entry of new values is completed the list of new calibration masses

is displayed.

INTERPOLATION TABLE OPERATIONS

LINCAL

n LINCAL - forces a linear calibration into the interpolation tables

for quads one and three. The value n is the upper mass limit of

quadrupole control electronics in use.

193

.ITABLE - DISPLAY INTERPOLATION TABLE

n .ITABLE - Displays the mass and dac entries in the interpolation

table for quad n, where n can be 1 or 3.

ISAVE

ISAVE - stores both interpolation tables on the disk. This is used to

save a calibration so that it is not lost when the computer is turned

off or reloaded.

IGET

IGET - recovers the interpolation table values stored on the disk

with the ISAVE command.

CALIBRATE

n CALIBRATE - calibrates quad n (1 or 3) by the following procedure.

A calibration mass is selected and the system pauses for the user to

adjust the multiplier gain if necessary. A mass window 4 amu wide is

scanned over the peak ten times. After each scan the DAC value on

intensity of the peak is displayed. An average DAC valued is then

displayed and the user has a choice of accepting or rejecting the

value. If rejected the averaging step is repeated. If accepted the

system proceeds to the next calibration mass. Note that the

calibration scans are performed at the currently selected scan rate.

For optimal calibrations the scanning rate should be the same for the

calibration and the data to be acquired.

194

FLOPPY DISK OPERATIONS

The floppy disk drive attached to the system can used to store

parameter set, methods and other user configured information.

Information that is normally stored on the fixed disk can be transfer

to or from the floppy disk by the commands described in this chapter.

The information on the floppy disk cannot be accessed directly, it

must first be transferred back to the fixed disk. All of the transfer

commands are prefixed with a } or { to indicate the direction of

transfer. } indicates a transfer from the fixed disk to the floppy,

while { indicate a transfer from the floppy to the fixed disk.

}SPLITS

}SPLITS - transfers the splits settings stored on the fixed disk with

the SSAVE command to the floppy disk.

{SPLITS)

}SPLITS - transfers the splits settings from the floppy disk to the

reserved storage area on the fixed disk. These setting do not become

active until a SGET command is issued.

}KNOBS

}KNOBS - transfers the current knob set definitions to the floppy

disk.

{KNOBS

{KNOBS - transfers a set of knob definitions from the floppy replacing

the current set of knob definitions.

}ITABLE

}ITABLE - transfer the calibration interpolation table stored on the

fixed disk with th ISAVE command to the floppy disk.

195

{ITABLE

{ITABLE - transfers the calibration interpolation table from the

floppy disk to the reserved storage area on the fixed disk. These

calibration values are not active until an IGET command is issued.

}PARAM

n }PARAM - transfers parameter set n to the floppy disk.

{PARAM

n {PARAM - transfers parameter set n from the floppy to the fixed

disk. The parameter set is not active until a PGET command is issued

for that parameter set.

}PARAMS

}PARAMS - transfers all 16 parameter sets to the floppy.

{PARAMS

{PARAMS - transfers all 16 parameter sets from the floppy to the fixed

disk.

}METHOD

n }METHOD - transfer method n from the fixed disk to the floppy disk.

{METHOD

n }METHOD - transfer method n from the floppy to the fixed disk.

}METHODS

n1 n2 }METHODS - transfer methods n1 thru n2 to the floppy disk.

{METHODS

n1 n2 {METHODS - transfer methods n1 thru n2 from the floppy to the

fixed disk.

196

MISC

HELP

Online help is supported in the following manner. Entering the command

HELP displays instructions on how to use the help facility. HELP

"word" displays help information for the function "word". To find out

what words help recognizes type HELP WORDS.

TRANSMISSION

n TRANSMISSION - computes the transmission of the instrument at mass

n. This is done by setting quads 1 and 3 to the desired mass and

measuring the ion current in the DC/RF/DC mode. Then quad 1 is set to

50% of quad 3 and the ion current is measured in the RF/RF/DC MODE.

The ratio of the DC/RF/DC ion current to the RF/RF/DC ion current is

computed and displayed. An example of this command follows.

219.0 TRANSMISSION

 21876 89678 TRANSMISSION AT MASS 219.0 = 24.3 %

The first number is the ion current measured in the DC/RF/DC mode and

the second number is the ion current in the RF/RF/DC mode. If either

of these number falls below 2000 or above 1,000,000 the calculated

value for the trans mission may be unreliable.

PTATRANS

PTATRANS - checks the transmission at masses 69.0, 131.0, 219.0, and

502.0. This is useful when perflurotributlyamine is being used as a

calibration compound.

197

Notes on Migration to MS Word

For easy of archiving the original text was migrated into MS Word in

February 2021. The migration attempted to preserve the look and feel

of the original document while not creating excess effort.

The original text was written for a Text Formatter called ReadiWriter

that used commands embedded into simple text to direct the formatting.

The formatting was some what specific to the printer being used at

the time, an Epson MX series dot-matrix printer that had only one

font size along with bold, italics and underlining highlights. 11pt

Courier New font was used as being fairly close to the original font.

The only additional highlight used was a slight increase in the font

size of some headings.

There were a surprising number of typos and other small errors in the

text, many of which were corrected. This document is not meant to be

an exact reproduction of the original, rather it is an attempt to

preserve the original information and look and feel. No effort was

made to clean up or enhance the scanned figures.

